class PowerPlant():
    def __init__(self):
        self.nw = Network(fluids=['BICUBIC::water'],
                          p_unit='bar',
                          T_unit='C',
                          h_unit='kJ / kg',
                          iterinfo=False)
        # components
        # main cycle
        eco = HeatExchangerSimple('economizer')
        eva = HeatExchangerSimple('evaporator')
        sup = HeatExchangerSimple('superheater')
        cc = CycleCloser('cycle closer')
        hpt = Turbine('high pressure turbine')
        sp1 = Splitter('splitter 1', num_out=2)
        mpt = Turbine('mid pressure turbine')
        sp2 = Splitter('splitter 2', num_out=2)
        lpt = Turbine('low pressure turbine')
        con = Condenser('condenser')
        pu1 = Pump('feed water pump')
        fwh1 = Condenser('feed water preheater 1')
        fwh2 = Condenser('feed water preheater 2')
        dsh = Desuperheater('desuperheater')
        me2 = Merge('merge2', num_in=2)
        pu2 = Pump('feed water pump 2')
        pu3 = Pump('feed water pump 3')
        me = Merge('merge', num_in=2)

        # cooling water
        cwi = Source('cooling water source')
        cwo = Sink('cooling water sink')

        # connections
        # main cycle
        cc_hpt = Connection(cc, 'out1', hpt, 'in1', label='feed steam')
        hpt_sp1 = Connection(hpt, 'out1', sp1, 'in1', label='extraction1')
        sp1_mpt = Connection(sp1, 'out1', mpt, 'in1', state='g')
        mpt_sp2 = Connection(mpt, 'out1', sp2, 'in1', label='extraction2')
        sp2_lpt = Connection(sp2, 'out1', lpt, 'in1')
        lpt_con = Connection(lpt, 'out1', con, 'in1')
        con_pu1 = Connection(con, 'out1', pu1, 'in1')
        pu1_fwh1 = Connection(pu1, 'out1', fwh1, 'in2')
        fwh1_me = Connection(fwh1, 'out2', me, 'in1', state='l')
        me_fwh2 = Connection(me, 'out1', fwh2, 'in2', state='l')
        fwh2_dsh = Connection(fwh2, 'out2', dsh, 'in2', state='l')
        dsh_me2 = Connection(dsh, 'out2', me2, 'in1')
        me2_eco = Connection(me2, 'out1', eco, 'in1', state='l')
        eco_eva = Connection(eco, 'out1', eva, 'in1')
        eva_sup = Connection(eva, 'out1', sup, 'in1')
        sup_cc = Connection(sup, 'out1', cc, 'in1')

        self.nw.add_conns(cc_hpt, hpt_sp1, sp1_mpt, mpt_sp2, sp2_lpt, lpt_con,
                          con_pu1, pu1_fwh1, fwh1_me, me_fwh2, fwh2_dsh,
                          dsh_me2, me2_eco, eco_eva, eva_sup, sup_cc)

        # cooling water
        cwi_con = Connection(cwi, 'out1', con, 'in2')
        con_cwo = Connection(con, 'out2', cwo, 'in1')

        self.nw.add_conns(cwi_con, con_cwo)

        # preheating
        sp1_dsh = Connection(sp1, 'out2', dsh, 'in1')
        dsh_fwh2 = Connection(dsh, 'out1', fwh2, 'in1')
        fwh2_pu2 = Connection(fwh2, 'out1', pu2, 'in1')
        pu2_me2 = Connection(pu2, 'out1', me2, 'in2')

        sp2_fwh1 = Connection(sp2, 'out2', fwh1, 'in1')
        fwh1_pu3 = Connection(fwh1, 'out1', pu3, 'in1')
        pu3_me = Connection(pu3, 'out1', me, 'in2')

        self.nw.add_conns(sp1_dsh, dsh_fwh2, fwh2_pu2, pu2_me2, sp2_fwh1,
                          fwh1_pu3, pu3_me)

        # busses
        # power bus
        self.power = Bus('power')
        self.power.add_comps({
            'comp': hpt,
            'char': -1
        }, {
            'comp': mpt,
            'char': -1
        }, {
            'comp': lpt,
            'char': -1
        }, {
            'comp': pu1,
            'char': -1
        }, {
            'comp': pu2,
            'char': -1
        }, {
            'comp': pu3,
            'char': -1
        })

        # heating bus
        self.heat = Bus('heat')
        self.heat.add_comps({
            'comp': eco,
            'char': 1
        }, {
            'comp': eva,
            'char': 1
        }, {
            'comp': sup,
            'char': 1
        })

        self.nw.add_busses(self.power, self.heat)

        # parametrization
        # components
        hpt.set_attr(eta_s=0.9)
        mpt.set_attr(eta_s=0.9)
        lpt.set_attr(eta_s=0.9)

        pu1.set_attr(eta_s=0.8)
        pu2.set_attr(eta_s=0.8)
        pu3.set_attr(eta_s=0.8)

        eco.set_attr(pr=0.99)
        eva.set_attr(pr=0.99)
        sup.set_attr(pr=0.99)

        con.set_attr(pr1=1, pr2=0.99, ttd_u=5)
        fwh1.set_attr(pr1=1, pr2=0.99, ttd_u=5)
        fwh2.set_attr(pr1=1, pr2=0.99, ttd_u=5)
        dsh.set_attr(pr1=0.99, pr2=0.99)

        # connections
        eco_eva.set_attr(x=0)
        eva_sup.set_attr(x=1)

        cc_hpt.set_attr(m=200, T=650, p=100, fluid={'water': 1})
        hpt_sp1.set_attr(p=20)
        mpt_sp2.set_attr(p=3)
        lpt_con.set_attr(p=0.05)

        cwi_con.set_attr(T=20, p=10, fluid={'water': 1})

        # test run
        self.nw.solve('design')
        document_model(self.nw)

    def calculate_efficiency(self, x):
        # set extraction pressure
        self.nw.get_conn('extraction1').set_attr(p=x[0])
        self.nw.get_conn('extraction2').set_attr(p=x[1])

        self.nw.solve('design')

        for cp in self.nw.comps['object']:
            if isinstance(cp, Condenser) or isinstance(cp, Desuperheater):
                if cp.Q.val > 0:
                    return np.nan
            elif isinstance(cp, Pump):
                if cp.P.val < 0:
                    return np.nan
            elif isinstance(cp, Turbine):
                if cp.P.val > 0:
                    return np.nan

        if self.nw.res[-1] > 1e-3 or self.nw.lin_dep:
            return np.nan
        else:
            return self.nw.busses['power'].P.val / self.nw.busses['heat'].P.val
class TestSEGS:
    def setup(self):
        """
        Full model validation of SEGS model in TESPy vs. EBSILON.

        Find original models at https://github.com/fwitte/SEGS_exergy.
        """
        # specification of ambient state
        self.pamb = 1.013
        self.Tamb = 25

        # setting up network
        self.nw = Network(fluids=['water', 'INCOMP::TVP1', 'air'])
        self.nw.set_attr(T_unit='C',
                         p_unit='bar',
                         h_unit='kJ / kg',
                         m_unit='kg / s',
                         s_unit="kJ / kgK")

        # components definition
        air_in = Source('Ambient air source', fkt_group='CW')
        air_out = Sink('Ambient air sink', fkt_group='CW')

        closer_pt = CycleCloser('Cycle closer pt', fkt_group='SF')
        pt = ParabolicTrough('Parabolic trough', fkt_group='SF')
        ptpump = Pump('HTF pump', fkt_group='SF')

        closer = CycleCloser('Cycle closer power cycle', fkt_group='SG')

        eco = HeatExchanger('Economizer', fkt_group='SG')
        eva = HeatExchanger('Evaporator', fkt_group='SG')
        sup = HeatExchanger('Superheater', fkt_group='SG')
        drum = Drum('Drum', fkt_group='SG')

        reh = HeatExchanger('Reheater', fkt_group='RH')

        hpt1 = Turbine('HP turbine 1', fkt_group='HPT')
        hpt2 = Turbine('HP turbine 2', fkt_group='HPT')
        lpt1 = Turbine('LP turbine 1', fkt_group='LPT')
        lpt2 = Turbine('LP turbine 2', fkt_group='LPT')
        lpt3 = Turbine('LP turbine 3', fkt_group='LPT')
        lpt4 = Turbine('LP turbine 4', fkt_group='LPT')
        lpt5 = Turbine('LP turbine 5', fkt_group='LPT')

        cond = Condenser('Condenser', fkt_group='CW')
        condpump = Pump('Condenser pump', fkt_group='CW')
        fwt = Merge('Feedwater tank', num_in=3, fkt_group='LPP')
        fwp = Pump('Feedwater pump', fkt_group='FWP')
        cwp = Pump('Cooling water pump', fkt_group='CW')
        closer_cw = CycleCloser('Cycle closer cw', fkt_group='CW')
        ct = HeatExchanger('Cooling tower', fkt_group='CW')
        fan = Compressor('Cooling tower fan', fkt_group='CW')

        sp1 = Splitter('Splitter 1', fkt_group='HPT')
        sp2 = Splitter('Splitter 2', fkt_group='HPT')
        sp3 = Splitter('Splitter 3', fkt_group='LPT')
        sp4 = Splitter('Splitter 4', fkt_group='LPT')
        sp5 = Splitter('Splitter 5', fkt_group='LPT')
        sp6 = Splitter('Splitter 6', fkt_group='LPT')
        sp7 = Splitter('Splitter 7', fkt_group='SF')

        m1 = Merge('Merge 1', fkt_group='CW')
        m2 = Merge('Merge 2', fkt_group='HPP')
        m3 = Merge('Merge 3', fkt_group='LPP')
        m4 = Merge('Merge 4', fkt_group='LPP')
        m5 = Merge('Merge 5', fkt_group='SF')

        v1 = Valve('Valve 1', fkt_group='HPP')
        v2 = Valve('Valve 2', fkt_group='HPP')
        v3 = Valve('Valve 3', fkt_group='LPP')
        v4 = Valve('Valve 4', fkt_group='LPP')
        v5 = Valve('Valve 5', fkt_group='LPP')

        hppre1 = Condenser('High pressure preheater 1', fkt_group='HPP')
        hppre2 = Condenser('High pressure preheater 2', fkt_group='HPP')
        hppre1_sub = HeatExchanger('High pressure preheater 1 subcooling',
                                   fkt_group='HPP')
        hppre2_sub = HeatExchanger('High pressure preheater 2 subcooling',
                                   fkt_group='HPP')

        lppre1 = Condenser('Low pressure preheater 1', fkt_group='LPP')
        lppre2 = Condenser('Low pressure preheater 2', fkt_group='LPP')
        lppre3 = Condenser('Low pressure preheater 3', fkt_group='LPP')
        lppre1_sub = HeatExchanger('Low pressure preheater 1 subcooling',
                                   fkt_group='LPP')
        lppre2_sub = HeatExchanger('Low pressure preheater 2 subcooling',
                                   fkt_group='LPP')
        lppre3_sub = HeatExchanger('Low pressure preheater 3 subcooling',
                                   fkt_group='LPP')

        # connections definition
        # power cycle
        c1 = Connection(sup, 'out2', closer, 'in1', label='1')
        c2 = Connection(closer, 'out1', hpt1, 'in1', label='2')
        c3 = Connection(hpt1, 'out1', sp1, 'in1', label='3')
        c4 = Connection(sp1, 'out1', hpt2, 'in1', label='4')
        c5 = Connection(hpt2, 'out1', sp2, 'in1', label='5')
        c6 = Connection(sp2, 'out1', reh, 'in2', label='6')
        c7 = Connection(reh, 'out2', lpt1, 'in1', label='7')
        c8 = Connection(lpt1, 'out1', sp3, 'in1', label='8')
        c9 = Connection(sp3, 'out1', lpt2, 'in1', label='9')
        c10 = Connection(lpt2, 'out1', sp4, 'in1', label='10')
        c11 = Connection(sp4, 'out1', lpt3, 'in1', label='11')
        c12 = Connection(lpt3, 'out1', sp5, 'in1', label='12')
        c13 = Connection(sp5, 'out1', lpt4, 'in1', label='13')
        c14 = Connection(lpt4, 'out1', sp6, 'in1', label='14')
        c15 = Connection(sp6, 'out1', lpt5, 'in1', label='15')
        c16 = Connection(lpt5, 'out1', m1, 'in1', label='16')
        c17 = Connection(m1, 'out1', cond, 'in1', label='17')
        c18 = Connection(cond, 'out1', condpump, 'in1', label='18')
        c19 = Connection(condpump, 'out1', lppre1, 'in2', label='19')
        # c19 = Connection(condpump, 'out1', lppre1_sub, 'in2', label='19')
        # c20 = Connection(lppre1_sub, 'out2', lppre1, 'in2', label='20')
        c21 = Connection(lppre1, 'out2', lppre2, 'in2', label='21')
        # c21 = Connection(lppre1, 'out2', lppre2_sub, 'in2', label='21')
        # c22 = Connection(lppre2_sub, 'out2', lppre2, 'in2', label='22')
        c23 = Connection(lppre2, 'out2', lppre3, 'in2', label='23')
        # c23 = Connection(lppre2, 'out2', lppre3_sub, 'in2', label='23')
        # c24 = Connection(lppre3_sub, 'out2', lppre3, 'in2', label='24')
        c25 = Connection(lppre3, 'out2', fwt, 'in1', label='25')
        c26 = Connection(fwt, 'out1', fwp, 'in1', label='26')
        c27 = Connection(fwp, 'out1', hppre1, 'in2', label='27')
        c29 = Connection(hppre1, 'out2', hppre2, 'in2', label='29')
        c31 = Connection(hppre2, 'out2', eco, 'in2', label='31')

        c36 = Connection(sp1, 'out2', hppre2, 'in1', label='36')
        c37 = Connection(hppre2, 'out1', v1, 'in1', label='37')
        c39 = Connection(v1, 'out1', m2, 'in2', label='39')
        c40 = Connection(sp2, 'out2', m2, 'in1', label='40')
        c41 = Connection(m2, 'out1', hppre1, 'in1', label='41')
        c42 = Connection(hppre1, 'out1', v2, 'in1', label='42')
        c44 = Connection(v2, 'out1', fwt, 'in2', label='44')
        c45 = Connection(sp3, 'out2', fwt, 'in3', label='45')
        c46 = Connection(sp4, 'out2', lppre3, 'in1', label='46')
        c47 = Connection(lppre3, 'out1', v3, 'in1', label='47')
        # c47 = Connection(lppre3, 'out1', lppre3_sub, 'in1', label='47')
        # c48 = Connection(lppre3_sub, 'out1', v3, 'in1', label='48')
        c49 = Connection(v3, 'out1', m3, 'in1', label='49')
        c50 = Connection(sp5, 'out2', m3, 'in2', label='50')
        c51 = Connection(m3, 'out1', lppre2, 'in1', label='51')
        c52 = Connection(lppre2, 'out1', v4, 'in1', label='52')
        # c52 = Connection(lppre2, 'out1', lppre2_sub, 'in1', label='52')
        # c53 = Connection(lppre2_sub, 'out1', v4, 'in1', label='53')
        c54 = Connection(v4, 'out1', m4, 'in2', label='54')
        c55 = Connection(sp6, 'out2', m4, 'in1', label='55')
        c56 = Connection(m4, 'out1', lppre1, 'in1', label='56')
        c57 = Connection(lppre1, 'out1', v5, 'in1', label='57')
        # c57 = Connection(lppre1, 'out1', lppre1_sub, 'in1', label='57')
        # c58 = Connection(lppre1_sub, 'out1', v5, 'in1', label='58')
        c59 = Connection(v5, 'out1', m1, 'in2', label='59')

        # components from subsystem
        c32 = Connection(eco, 'out2', drum, 'in1', label='32')
        c33 = Connection(drum, 'out1', eva, 'in2', label='33')
        c34 = Connection(eva, 'out2', drum, 'in2', label='34')
        c35 = Connection(drum, 'out2', sup, 'in2', label='35')
        c73 = Connection(sup, 'out1', eva, 'in1', label='73')
        c74 = Connection(eva, 'out1', eco, 'in1', label='74')

        # cooling water
        c60 = Connection(cond, 'out2', closer_cw, 'in1', label='60')
        c61 = Connection(closer_cw, 'out1', ct, 'in1', label='61')
        c62 = Connection(ct, 'out1', cwp, 'in1', label='62')
        c63 = Connection(cwp, 'out1', cond, 'in2', label='63')

        # cooling tower
        c64 = Connection(air_in, 'out1', fan, 'in1', label='64')
        c65 = Connection(fan, 'out1', ct, 'in2', label='65')
        c66 = Connection(ct, 'out2', air_out, 'in1', label='66')

        # parabolic trough cycle
        c70 = Connection(pt, 'out1', closer_pt, 'in1', label='67')
        c71 = Connection(closer_pt, 'out1', sp7, 'in1', label='71')
        c72 = Connection(sp7, 'out1', sup, 'in1', label='72')
        c75 = Connection(eco, 'out1', m5, 'in1', label='75')
        c76 = Connection(sp7, 'out2', reh, 'in1', label='76')
        c77 = Connection(reh, 'out1', m5, 'in2', label='77')
        c78 = Connection(m5, 'out1', ptpump, 'in1', label='78')
        c79 = Connection(ptpump, 'out1', pt, 'in1', label='79')

        # add connections to network
        self.nw.add_conns(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12,
                          c13, c14, c15, c16, c17, c18, c19, c21, c23, c25,
                          c26, c27, c29, c31, c32, c33, c34, c35, c36, c37,
                          c39, c40, c41, c42, c44, c45, c46, c47, c49, c50,
                          c51, c52, c54, c55, c56, c57, c59, c60, c61, c62,
                          c63, c64, c65, c66, c70, c71, c72, c73, c74, c75,
                          c76, c77, c78, c79)

        # power bus
        power = Bus('total output power')
        power.add_comps({
            'comp': hpt1,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': hpt2,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt1,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt2,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt3,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt4,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt5,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': fwp,
            'char': 0.95,
            'base': 'bus'
        }, {
            'comp': condpump,
            'char': 0.95,
            'base': 'bus'
        }, {
            'comp': ptpump,
            'char': 0.95,
            'base': 'bus'
        }, {
            'comp': cwp,
            'char': 0.95,
            'base': 'bus'
        }, {
            'comp': fan,
            'char': 0.95,
            'base': 'bus'
        })

        heat_input_bus = Bus('heat input')
        heat_input_bus.add_comps({'comp': pt, 'base': 'bus'})

        exergy_loss_bus = Bus('exergy loss')
        exergy_loss_bus.add_comps({
            'comp': air_in,
            'base': 'bus'
        }, {'comp': air_out})

        self.nw.add_busses(power, heat_input_bus, exergy_loss_bus)

        # component parameters
        pt.set_attr(doc=0.95,
                    aoi=0,
                    Tamb=25,
                    A='var',
                    eta_opt=0.73,
                    c_1=0.00496,
                    c_2=0.000691,
                    E=1000,
                    iam_1=1,
                    iam_2=1)

        ptpump.set_attr(eta_s=0.6)

        eco.set_attr()
        eva.set_attr(ttd_l=5)
        sup.set_attr()

        hpt1.set_attr(eta_s=0.8376)
        hpt2.set_attr(eta_s=0.8463)
        lpt1.set_attr(eta_s=0.8623)
        lpt2.set_attr(eta_s=0.917)
        lpt3.set_attr(eta_s=0.9352)
        lpt4.set_attr(eta_s=0.88)
        lpt5.set_attr(eta_s=0.6445)

        cond.set_attr(pr1=1, pr2=0.9, ttd_u=5)
        condpump.set_attr(eta_s=0.7)
        fwp.set_attr(eta_s=0.7)
        cwp.set_attr(eta_s=0.7)
        ct.set_attr(pr1=0.95)
        fan.set_attr(eta_s=0.6)

        lppre1.set_attr(pr1=1, ttd_u=5)
        lppre2.set_attr(pr1=1, ttd_u=5)
        lppre3.set_attr(pr1=1, ttd_u=5)
        hppre1.set_attr(pr1=1, ttd_u=5)
        hppre2.set_attr(pr1=1, ttd_u=5)

        lppre1_sub.set_attr(pr1=1, pr2=1, ttd_l=10)
        lppre2_sub.set_attr(pr1=1, pr2=1, ttd_l=10)
        lppre3_sub.set_attr(pr1=1, pr2=1, ttd_l=10)
        hppre1_sub.set_attr(pr1=1, pr2=1, ttd_l=10)
        hppre2_sub.set_attr(pr1=1, pr2=1, ttd_l=10)

        # connection parameters
        # parabolic trough cycle
        c70.set_attr(fluid={'TVP1': 1, 'water': 0, 'air': 0}, T=390, p=23.304)
        c76.set_attr(m=Ref(c70, 0.1284, 0))
        c73.set_attr(p=22.753)
        c74.set_attr(p=21.167)
        c78.set_attr(p=20.34)
        c79.set_attr(p=41.024)

        # cooling water
        c62.set_attr(fluid={
            'TVP1': 0,
            'water': 1,
            'air': 0
        },
                     T=30,
                     p=self.pamb)
        # cooling tower
        c64.set_attr(fluid={
            'water': 0,
            'TVP1': 0,
            'air': 1
        },
                     p=self.pamb,
                     T=self.Tamb)
        c65.set_attr(p=self.pamb + 0.0005)
        c66.set_attr(p=self.pamb, T=30)
        # power cycle
        c32.set_attr(Td_bp=-2)
        c34.set_attr(x=0.5)
        c1.set_attr(fluid={'water': 1, 'TVP1': 0, 'air': 0}, p=100, T=371)

        # steam generator pressure values
        c31.set_attr(p=103.56)
        c35.set_attr(p=103.42)

        # turbine pressure values
        c3.set_attr(p=33.61, m=38.969)
        c5.set_attr(p=18.58)
        c7.set_attr(p=17.1, T=371)
        c8.set_attr(p=7.98)
        c10.set_attr(p=2.73)
        c12.set_attr(p=0.96)
        c14.set_attr(p=0.29)

        # preheater pressure values
        c19.set_attr(p=14.755, state='l')
        c21.set_attr(p=9.9975, state='l')
        c23.set_attr(p=8.7012, state='l')
        c25.set_attr(state='l')

        c27.set_attr(p=125)
        c29.set_attr(p=112)

        # condensation
        c16.set_attr(p=0.08)

        # feedwater tank
        c26.set_attr(x=0)

        # a stable solution is generated for parts of the network
        self.nw.solve(mode='design')

        self.nw.del_conns(c19, c21, c23, c27, c29, c37, c42, c47, c52, c57)

        c19 = Connection(condpump, 'out1', lppre1_sub, 'in2', label='19')
        c20 = Connection(lppre1_sub, 'out2', lppre1, 'in2', label='20')
        c21 = Connection(lppre1, 'out2', lppre2_sub, 'in2', label='21')
        c22 = Connection(lppre2_sub, 'out2', lppre2, 'in2', label='22')
        c23 = Connection(lppre2, 'out2', lppre3_sub, 'in2', label='23')
        c24 = Connection(lppre3_sub, 'out2', lppre3, 'in2', label='24')

        c27 = Connection(fwp, 'out1', hppre1_sub, 'in2', label='27')
        c28 = Connection(hppre1_sub, 'out2', hppre1, 'in2', label='28')
        c29 = Connection(hppre1, 'out2', hppre2_sub, 'in2', label='29')
        c30 = Connection(hppre2_sub, 'out2', hppre2, 'in2', label='30')

        c37 = Connection(hppre2, 'out1', hppre2_sub, 'in1', label='37')
        c38 = Connection(hppre2_sub, 'out1', v1, 'in1', label='38')
        c42 = Connection(hppre1, 'out1', hppre1_sub, 'in1', label='42')
        c43 = Connection(hppre1_sub, 'out1', v2, 'in1', label='43')

        c47 = Connection(lppre3, 'out1', lppre3_sub, 'in1', label='47')
        c48 = Connection(lppre3_sub, 'out1', v3, 'in1', label='48')
        c52 = Connection(lppre2, 'out1', lppre2_sub, 'in1', label='52')
        c53 = Connection(lppre2_sub, 'out1', v4, 'in1', label='53')
        c57 = Connection(lppre1, 'out1', lppre1_sub, 'in1', label='57')
        c58 = Connection(lppre1_sub, 'out1', v5, 'in1', label='58')

        self.nw.add_conns(c19, c20, c21, c22, c23, c24, c27, c28, c29, c30,
                          c37, c38, c42, c43, c47, c48, c52, c53, c57, c58)

        # specification of missing parameters
        c19.set_attr(p=14.755)
        c21.set_attr(p=9.9975, state='l')
        c23.set_attr(p=8.7012, state='l')
        c27.set_attr(p=125)
        c29.set_attr(p=112)

        # solve final state
        self.nw.solve(mode='design')

    def test_model(self):
        """Test the thermodynamic model."""
        power_ebsilon = -31.769
        power_tespy = round(self.nw.busses['total output power'].P.val / 1e6,
                            3)
        msg = ('The total power calculated (' + str(power_tespy) +
               ') does not '
               'match the power calculated with the EBSILON model (' +
               str(power_ebsilon) + ').')
        assert power_tespy == power_ebsilon, msg

        T_c79_ebsilon = 296.254
        T_c79_tespy = round(self.nw.get_conn('79').T.val, 3)
        msg = ('The temperature at connection 79 calculated (' +
               str(T_c79_tespy) +
               ') does not match the temperature calculated '
               'with the EBSILON model (' + str(T_c79_ebsilon) + ').')
        assert T_c79_tespy == T_c79_ebsilon, msg

    def test_exergy_analysis(self):
        """Test the exergy analysis results."""
        # carry out exergy analysis
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.nw.busses['total output power']],
                             E_F=[self.nw.busses['heat input']],
                             E_L=[self.nw.busses['exergy loss']])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        # generate Grassmann diagram
        links, nodes = ean.generate_plotly_sankey_input()

        # check if exergy product value in links is equal to total power
        # output
        position = links['target'].index(nodes.index('E_P'))
        power_links = round(links['value'][position], 0)
        power_bus = round(-self.nw.busses['total output power'].P.val, 0)
        msg = ('The exergy product value in the links (' + str(power_links) +
               ') must be equal to the power on the respective bus (' +
               str(power_bus) + ').')
        assert power_links == power_bus, msg
Beispiel #3
0
class TestCompressedAirOut:
    def setup(self):
        """Set up air compressed air turbine."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['Air']

        # turbine part
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # components
        cas = Source('compressed air storage')
        reheater = HeatExchangerSimple('reheating')
        turb = Turbine('turbine')
        amb = Sink('air outlet')

        # power ouput bus
        self.power_out = Bus('power output')
        self.power_out.add_comps({'comp': turb, 'char': 1})
        # compressed air bus
        self.cas_out = Bus('exergy in')
        self.cas_out.add_comps({
            'comp': cas,
            'base': 'bus'
        }, {
            'comp': reheater,
            'base': 'bus'
        })
        # exergy loss bus
        self.ex_loss = Bus('exergy loss')
        self.ex_loss.add_comps({'comp': amb, 'base': 'component'})
        self.nw.add_busses(self.power_out, self.cas_out)

        # create connections
        cas_reheater = Connection(cas, 'out1', reheater, 'in1')
        reheater_turb = Connection(reheater, 'out1', turb, 'in1')
        turb_amb = Connection(turb, 'out1', amb, 'in1', label='outlet')
        self.nw.add_conns(cas_reheater, reheater_turb, turb_amb)

        # component parameters
        turb.set_attr(eta_s=1)
        reheater.set_attr(pr=1)

        # connection parameters
        cas_reheater.set_attr(m=2, T=self.Tamb, p=10, fluid={'Air': 1})
        reheater_turb.set_attr()
        turb_amb.set_attr(p=self.pamb, T=self.Tamb)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

    def test_exergy_analysis_bus_conversion(self):
        """Test exergy analysis at product exergy with T < Tamb."""
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power_out],
                             E_F=[self.cas_out],
                             E_L=[self.ex_loss])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + '.')
        assert abs(exergy_balance) <= err**0.5, msg

        msg = ('Exergy efficiency must be equal to 1.0 for this test but is ' +
               str(round(ean.network_data.epsilon, 4)) + '.')
        assert round(ean.network_data.epsilon, 4) == 1, msg

        c = self.nw.get_conn('outlet')
        c.set_attr(T=self.Tamb - 20)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        msg = (
            'Exergy destruction must be equal to 0.0 for this test but is ' +
            str(round(ean.network_data.E_D, 4)) + '.')
        assert round(ean.network_data.E_D, 4) == 0, msg

        msg = ('Exergy loss must be equal to ' + str(round(c.Ex_physical, 4)) +
               ' for this test but is ' + str(round(ean.network_data.E_L, 4)) +
               '.')
        assert round(ean.network_data.E_L, 4) == round(c.Ex_physical, 4), msg
Beispiel #4
0
class PowerPlant():

    def __init__(self, working_fluid):
        """Set up model."""
        self.working_fluid = working_fluid
        fluids = ['water', self.working_fluid, 'air']
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # geo parameters

        self.geo_mass_flow = 200
        geo_steam_share = 0.1
        self.T_brine_in = 140

        # ambient parameters

        self.T_amb = 5
        self.p_amb = 0.6

        # main components

        geo_steam = Source('geosteam source')
        geo_brine = Source('geobrine source')
        geo_reinjection = Sink('re-injection')

        air_in = Source('air source')
        air_out = Sink('air sink')
        air_fan = Compressor('air fan')
        air_cond = Condenser('condenser')

        orc_cc = CycleCloser('orc cycle closer')

        evap_splitter = Splitter('splitter evaporation')
        evap_merge = Merge('merge evaporation')
        evap_steam = Condenser('geosteam evaporator')
        evap_brine = HeatExchanger('geobrine evaporator')
        dr = Drum('drum')
        geo_merge = Merge('merge brine')

        pre = HeatExchanger('preheater')
        feed_working_fluid_pump = Pump('feed pump')

        tur = Turbine('turbine')

        ihe = HeatExchanger('internal heat exchanger')

        # busses
        net_power = Bus('net power output')
        net_power.add_comps(
            {'comp': tur, 'char': 0.97},
            {'comp': feed_working_fluid_pump, 'char': 0.97, 'base': 'bus'},
            {'comp': air_fan, 'char': 0.97, 'base': 'bus'}
        )

        ORC_power_bus = Bus('cycle gross power output')
        ORC_power_bus.add_comps(
            {'comp': tur}, {'comp': feed_working_fluid_pump}
        )

        geothermal_bus = Bus('thermal input')
        geothermal_bus.add_comps(
            {'comp': pre, 'char': -1}, {'comp': evap_brine, 'char': -1},
            {'comp': evap_steam, 'char': -1}
        )

        self.nw.add_busses(net_power, ORC_power_bus, geothermal_bus)

        # turbine to condenser
        c1 = Connection(orc_cc, 'out1', tur, 'in1', label='1')
        c2 = Connection(tur, 'out1', ihe, 'in1', label='2')
        c3 = Connection(ihe, 'out1', air_cond, 'in1', label='3')
        self.nw.add_conns(c1, c2, c3)

        # condenser to steam generator
        c4 = Connection(air_cond, 'out1', feed_working_fluid_pump, 'in1', label='4')
        c5 = Connection(feed_working_fluid_pump, 'out1', ihe, 'in2', label='5')
        self.nw.add_conns(c4, c5)

        # steam generator
        c6 = Connection(ihe, 'out2', pre, 'in2', label='6')
        c7 = Connection(pre, 'out2', dr, 'in1', label='7')
        c8 = Connection(dr, 'out1', evap_splitter, 'in1', label='8')
        c9 = Connection(evap_splitter, 'out2', evap_steam, 'in2', label='9')
        c10 = Connection(evap_steam, 'out2', evap_merge, 'in2', label='10')
        c11 = Connection(evap_splitter, 'out1', evap_brine, 'in2', label='11')
        c12 = Connection(evap_brine, 'out2', evap_merge, 'in1', label='12')
        c13 = Connection(evap_merge, 'out1', dr, 'in2', label='13')
        c0 = Connection(dr, 'out2', orc_cc, 'in1', label='0')
        self.nw.add_conns(c6, c7, c8, c11, c9, c12, c10, c13, c0)

        # condenser cold side
        c20 = Connection(air_in, 'out1', air_fan, 'in1', label='20')
        c21 = Connection(air_fan, 'out1', air_cond, 'in2', label='21')
        c22 = Connection(air_cond, 'out2', air_out, 'in1', label='22')
        self.nw.add_conns(c20, c21, c22)

        # geo source
        c30 = Connection(geo_steam, 'out1', evap_steam, 'in1', label='30')
        c31 = Connection(evap_steam, 'out1',  geo_merge, 'in1', label='31')
        c32 = Connection(geo_brine, 'out1', geo_merge, 'in2', label='32')
        c33 = Connection(geo_merge, 'out1', evap_brine, 'in1', label='33')
        self.nw.add_conns(c30, c31, c32, c33)

        c34 = Connection(evap_brine, 'out1', pre, 'in1', label='34')
        c35 = Connection(pre, 'out1', geo_reinjection, 'in1', label='35')
        self.nw.add_conns(c34, c35)

        # generate a set of stable starting values of every working fluid
        # fluid settings
        c6.set_attr(fluid={self.working_fluid: 1.0, 'air': 0.0, 'water': 0.0})
        c20.set_attr(fluid={self.working_fluid: 0.0, 'air': 1.0, 'water': 0.0})
        c30.set_attr(fluid={self.working_fluid: 0.0, 'air': 0.0, 'water': 1.0})
        c32.set_attr(fluid={self.working_fluid: 0.0, 'air': 0.0, 'water': 1.0})

        # connection parameters
        p0 = PSI('P', 'T', self.T_brine_in + 273.15, 'Q', 1, self.working_fluid)
        c1.set_attr(p0=p0 / 1e5)
        ws_stable_h0 = (
            PSI('H', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid) +
            0.5 * (
                PSI('H', 'T', self.T_brine_in + 273.15, 'Q', 1, self.working_fluid) -
                PSI('H', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid)
            )
        ) / 1e3
        c2.set_attr(h=ws_stable_h0)
        p0 = PSI('P', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid)
        c3.set_attr(Td_bp=5, design=['Td_bp'], p0=p0 / 1e5)
        c5.set_attr(h=Ref(c4, 1, 1))

        # steam generator
        c30.set_attr(
            m=self.geo_mass_flow * geo_steam_share,
            T=self.T_brine_in, x=1, p0=5)
        c32.set_attr(
            m=self.geo_mass_flow * (1 - geo_steam_share),
            T=self.T_brine_in, x=0)

        c13.set_attr()
        c12.set_attr(x=0.5)
        c10.set_attr(x=0.5, design=['x'])
        c34.set_attr(h=Ref(c33, 1, -50))

        c7.set_attr(Td_bp=-2)

        # main condenser
        c20.set_attr(p=self.p_amb, T=self.T_amb)
        c22.set_attr(T=self.T_amb + 15, p=self.p_amb)

        # component parameters
        # condensing
        ihe.set_attr(pr1=0.98, pr2=0.98)
        air_cond.set_attr(pr1=1, pr2=0.995, ttd_u=10)
        air_fan.set_attr(eta_s=0.6)

        # steam generator
        evap_brine.set_attr(pr1=0.98, ttd_l=8)
        pre.set_attr(pr1=0.98, pr2=0.98)

        self.nw.set_attr(iterinfo=False)
        self.nw.solve('design')
        self.nw.save('stable_' + self.working_fluid)

        # specify actual parameters
        tur.set_attr(eta_s=0.9)
        feed_working_fluid_pump.set_attr(eta_s=0.75)
        c2.set_attr(h=None)
        c5.set_attr(h=None)
        c34.set_attr(h=None, T=Ref(c33, 1, -10))

        self.nw.solve('design')
        c22.set_attr(T=None)
        c3.set_attr(Td_bp=None)

        self.ude_IHE_size = UserDefinedEquation(
            label='ihe deshuperheat ratio',
            func=desuperheat, deriv=desuperheat_deriv,
            latex={
                'equation':
                    r'0 = h_3 - h_2 - x_\mathrm{IHE} \cdot \left(h_3 -'
                    r'h\left(p_2, T_5 + \Delta T_\mathrm{t,u,min} \right)'
                    r'\right)'},
            conns=[
                self.nw.get_conn('2'),
                self.nw.get_conn('3'),
                self.nw.get_conn('5')],
            params={'distance': 0.0, 'ttd_min': 2}
        )
        if self.nw.lin_dep or self.nw.res[-1] > 1e-3:
            msg = 'No stable solution found.'
            raise TESPyNetworkError(msg)
        print(
            'Generated stable starting values for working fluid ' +
            self.working_fluid + '.')

    def run_simulation(
            self, p_before_tur=None, Q_ihe=None, Q_brine_ev=None,
            T_before_tur=None, T_reinjection=None, brine_evap_Td=None,
            dT_air=None, IHE_sizing=None, geo_steam_share=None):
        """Run simulation on specified parameter set."""

        self.nw.get_comp('internal heat exchanger').set_attr(Q=Q_ihe)
        self.nw.get_conn('1').set_attr(p=p_before_tur, T=T_before_tur)
        self.nw.get_conn('35').set_attr(T=T_reinjection)
        self.nw.get_comp('geobrine evaporator').set_attr(Q=Q_brine_ev)

        if geo_steam_share is not None:
            self.nw.get_conn('30').set_attr(
                m=self.geo_mass_flow * geo_steam_share)
            self.nw.get_conn('32').set_attr(
                m=self.geo_mass_flow * (1 - geo_steam_share))

        if brine_evap_Td is not None:
            self.nw.get_conn('34').set_attr(
                T=Ref(self.nw.get_conn('33'), 1, brine_evap_Td))
        else:
            self.nw.get_conn('34').set_attr(T=None)

        if dT_air is not None:
            self.nw.get_conn('22').set_attr(T=Ref(self.nw.get_conn('21'), 1, dT_air))
        else:
            self.nw.get_conn('22').set_attr(T=None)

        if IHE_sizing is None:
            if self.ude_IHE_size in self.nw.user_defined_eq.values():
                self.nw.del_ude(self.ude_IHE_size)
            self.nw.get_comp('internal heat exchanger').set_attr(pr1=0.98, pr2=0.98)
        else:
            if self.ude_IHE_size not in self.nw.user_defined_eq.values():
                self.nw.add_ude(self.ude_IHE_size)
            self.ude_IHE_size.params['distance'] = IHE_sizing
            if IHE_sizing == 0:
                self.nw.get_comp('internal heat exchanger').set_attr(pr1=1, pr2=1)
            else:
                self.nw.get_comp('internal heat exchanger').set_attr(pr1=0.98, pr2=0.98)

        try:
            self.nw.solve('design')
#            self.nw.print_results()
        except ValueError:
            self.nw.res = [1]
            pass

    def check_simulation(self, value):
        """Check if simulation converged."""
        if self.nw.lin_dep or self.nw.res[-1] > 1e-3:
            self.nw.solve(
                'design', init_path='stable_' + self.working_fluid,
                init_only=True)
            return np.nan
        else:
            for cp in self.nw.comps['object']:
                if isinstance(cp, HeatExchanger):
                    if cp.Q.val > 0:
                        print(cp.label)
                        return np.nan
                    elif cp.kA.val <= 0 or (np.isnan(cp.kA.val) and cp.Q.val != 0):
                        print(cp.label)
                        return np.nan
        return value

    def get_power(self):
        """Calculate ORC gross power (main cycle only)."""
        return self.check_simulation(self.nw.busses['cycle gross power output'].P.val)

    def get_net_power(self):
        """Calculate net power."""
        return self.check_simulation(self.nw.busses['net power output'].P.val)

    def get_thermal_efficiency(self):
        """Calculate thermal efficiency."""
        return self.check_simulation(
            -self.nw.busses['cycle gross power output'].P.val /
            self.nw.busses['thermal input'].P.val)

    def get_net_efficiency(self):
        """Calculate net efficiency."""
        return self.check_simulation(
            -self.nw.busses['net power output'].P.val /
            self.nw.busses['thermal input'].P.val)

    def get_geosteam_share(self):
        """Return a geosteam share."""
        return self.check_simulation(
            self.nw.get_conn('geosteam').m.val_SI / self.geo_mass_flow)

    def get_connection_param(self, conn, param):
        """Return a connection parameter."""
        return self.check_simulation(
            self.nw.get_conn(conn).get_attr(param).val)

    def get_component_param(self, comp, param):
        """Return a component parameter."""
        return self.check_simulation(
            self.nw.get_comp(comp).get_attr(param).val)

    def get_misc_param(self, param):
        """Get non component or connection parameters."""
        if param == 'gross power output':
            return self.get_power()
        elif param == 'net power output':
            return self.get_net_power()
        elif param == 'thermal efficiency':
            return self.get_thermal_efficiency()
        elif param == 'net efficiency':
            return self.get_net_efficiency()
        elif param == 'IHE sizing factor':
            return self.ude_IHE_size.params['distance']

    def get_objective_func(self, objective):
        """Return corresponding objective function."""
        if objective == 'net power output':
            return self.get_net_power
        elif objective == 'gross power output':
            return self.get_power
        else:
            msg = (
                'Please specify valid objective function: "net power output" '
                'or "gross power output".')
            raise ValueError(msg)
Beispiel #5
0
class TestClausiusRankine:
    def setup(self):
        """Set up clausis rankine cycle with turbine driven feed water pump."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['water']
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # create components
        splitter1 = Splitter('splitter 1')
        merge1 = Merge('merge 1')
        turb = Turbine('turbine')
        fwp_turb = Turbine('feed water pump turbine')
        condenser = HeatExchangerSimple('condenser')
        fwp = Pump('pump')
        steam_generator = HeatExchangerSimple('steam generator')
        cycle_close = CycleCloser('cycle closer')

        # create busses
        # power output bus
        self.power = Bus('power_output')
        self.power.add_comps({'comp': turb, 'char': 1})
        # turbine driven feed water pump internal bus
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps({
            'comp': fwp_turb,
            'char': 1
        }, {
            'comp': fwp,
            'char': 1,
            'base': 'bus'
        })
        # heat input bus
        self.heat = Bus('heat_input')
        self.heat.add_comps({'comp': steam_generator, 'base': 'bus'})
        self.nw.add_busses(self.power, self.fwp_power, self.heat)

        # create connections
        fs_in = Connection(cycle_close, 'out1', splitter1, 'in1', label='fs')
        fs_fwpt = Connection(splitter1, 'out1', fwp_turb, 'in1')
        fs_t = Connection(splitter1, 'out2', turb, 'in1')
        fwpt_ws = Connection(fwp_turb, 'out1', merge1, 'in1')
        t_ws = Connection(turb, 'out1', merge1, 'in2')
        ws = Connection(merge1, 'out1', condenser, 'in1')
        cond = Connection(condenser, 'out1', fwp, 'in1', label='cond')
        fw = Connection(fwp, 'out1', steam_generator, 'in1', label='fw')
        fs_out = Connection(steam_generator, 'out1', cycle_close, 'in1')
        self.nw.add_conns(fs_in, fs_fwpt, fs_t, fwpt_ws, t_ws, ws, cond, fw,
                          fs_out)

        # component parameters
        turb.set_attr(eta_s=1)
        fwp_turb.set_attr(eta_s=1)
        condenser.set_attr(pr=1)
        fwp.set_attr(eta_s=1)
        steam_generator.set_attr(pr=1)

        # connection parameters
        fs_in.set_attr(m=10, p=120, T=600, fluid={'water': 1})
        cond.set_attr(T=self.Tamb, x=0)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

    def test_exergy_analysis_perfect_cycle(self):
        """Test exergy analysis in the perfect clausius rankine cycle."""
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power],
                             E_F=[self.heat],
                             internal_busses=[self.fwp_power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)
        msg = ('Exergy destruction of this network must be 0 (smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(ean.network_data.E_D), 4)) + ' .')
        assert abs(ean.network_data.E_D) <= err**0.5, msg

        msg = ('Exergy efficiency of this network must be 1 for this test but '
               'is ' + str(round(ean.network_data.epsilon, 4)) + ' .')
        assert round(ean.network_data.epsilon, 4) == 1, msg

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) <= err**0.5, msg

        msg = (
            'Fuel exergy and product exergy must be identical for this test. '
            'Fuel exergy value: ' + str(round(ean.network_data.E_F, 4)) +
            '. Product exergy value: ' + str(round(ean.network_data.E_P, 4)) +
            '.')
        delta = round(abs(ean.network_data.E_F - ean.network_data.E_P), 4)
        assert delta < err**0.5, msg

    def test_exergy_analysis_plotting_data(self):
        """Test exergy analysis plotting."""
        self.nw.get_comp('steam generator').set_attr(pr=0.9)
        self.nw.get_comp('turbine').set_attr(eta_s=0.9)
        self.nw.get_comp('feed water pump turbine').set_attr(eta_s=0.85)
        self.nw.get_comp('pump').set_attr(eta_s=0.75)
        self.nw.get_conn('cond').set_attr(T=self.Tamb + 3)

        # specify efficiency values for the internal bus and power bus
        self.nw.del_busses(self.fwp_power, self.power)

        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.power = Bus('power_output')
        self.power.add_comps({
            'comp': self.nw.get_comp('turbine'),
            'char': 0.98
        })

        self.nw.add_busses(self.fwp_power, self.power)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power],
                             E_F=[self.heat],
                             internal_busses=[self.fwp_power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) <= err**0.5, msg

        nodes = [
            'E_F', 'steam generator', 'splitter 1', 'feed water pump turbine',
            'turbine', 'merge 1', 'condenser', 'pump', 'E_D', 'E_P'
        ]

        links, nodes = ean.generate_plotly_sankey_input(node_order=nodes)
        # checksum for targets and source
        checksum = sum(links['target'] + links['source'])
        msg = ('The checksum of all target and source values in the link lists'
               'must be 148, but is ' + str(checksum) + '.')
        assert 148 == checksum, msg

    def test_exergy_analysis_violated_balance(self):
        """Test exergy analysis with violated balance."""
        # specify efficiency values for the internal bus
        self.nw.del_busses(self.fwp_power)
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.nw.add_busses(self.fwp_power)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        # miss out on internal bus in exergy_analysis
        ean = ExergyAnalysis(self.nw, E_P=[self.power], E_F=[self.heat])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be violated for this test (larger than ' +
               str(err**0.5) + ') but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) > err**0.5, msg

    def test_exergy_analysis_bus_conversion(self):
        """Test exergy analysis bus conversion factors."""
        # specify efficiency values for the internal bus
        self.nw.del_busses(self.fwp_power)
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.nw.add_busses(self.fwp_power)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        # no exergy losses in this case
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power],
                             E_F=[self.heat],
                             internal_busses=[self.fwp_power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        label = 'pump'
        eps = ean.bus_data.loc[label, 'epsilon']
        msg = ('Pump exergy efficiency must be 0.98 but is ' +
               str(round(eps, 4)) + ' .')
        assert round(eps, 4) == 0.98, msg

        label = 'feed water pump turbine'
        eps = ean.bus_data.loc[label, 'epsilon']
        msg = (
            'Feed water pump turbine exergy efficiency must be 0.99 but is ' +
            str(round(eps, 4)) + ' .')
        assert round(eps, 4) == 0.99, msg

    def test_exergy_analysis_missing_E_F_E_P_information(self):
        """Test exergy analysis errors with missing information."""
        with raises(TESPyNetworkError):
            ExergyAnalysis(self.nw, E_P=[self.power], E_F=[])

        with raises(TESPyNetworkError):
            ExergyAnalysis(self.nw, E_P=[], E_F=[self.heat])

    def test_exergy_analysis_component_on_two_busses(self):
        """Test exergy analysis errors with components on more than one bus."""
        with raises(TESPyNetworkError):
            ean = ExergyAnalysis(self.nw,
                                 E_P=[self.power],
                                 E_F=[self.heat, self.power])
            ean.analyse(pamb=self.pamb, Tamb=self.Tamb)
Beispiel #6
0
class TestReactors:
    def setup(self):
        """Set up network for electrolyzer tests."""
        self.nw = Network(['O2', 'H2', 'H2O'], T_unit='C', p_unit='bar')
        self.instance = WaterElectrolyzer('electrolyzer')

        fw = Source('feed water')
        cw_in = Source('cooling water')
        o2 = Sink('oxygen sink')
        h2 = Sink('hydrogen sink')
        cw_out = Sink('cooling water sink')

        self.instance.set_attr(pr=0.99, eta=1)

        cw_el = Connection(cw_in,
                           'out1',
                           self.instance,
                           'in1',
                           fluid={
                               'H2O': 1,
                               'H2': 0,
                               'O2': 0
                           },
                           T=20,
                           p=1)
        el_cw = Connection(self.instance, 'out1', cw_out, 'in1', T=45)

        self.nw.add_conns(cw_el, el_cw)

        fw_el = Connection(fw, 'out1', self.instance, 'in2', label='h2o')
        el_o2 = Connection(self.instance, 'out2', o2, 'in1')
        el_h2 = Connection(self.instance, 'out3', h2, 'in1', label='h2')

        self.nw.add_conns(fw_el, el_o2, el_h2)

    def test_WaterElectrolyzer(self):
        """Test component properties of water electrolyzer."""
        # check bus function:
        # power output on component and bus must be indentical
        self.nw.get_conn('h2o').set_attr(T=25, p=1)
        self.nw.get_conn('h2').set_attr(T=25)
        power = Bus('power')
        power.add_comps({'comp': self.instance, 'param': 'P', 'base': 'bus'})
        power.set_attr(P=2.5e6)
        self.nw.add_busses(power)

        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of power must be ' + str(power.P.val) + ', is ' +
               str(self.instance.P.val) + '.')
        assert round(power.P.val, 1) == round(self.instance.P.val), msg

        # effieciency was set to 100 % with inlet and outlet states of the
        # reaction educts and products beeing identical to reference state
        # therefore Q must be equal to 0
        msg = ('Value of heat output must be 0.0, is ' +
               str(self.instance.Q.val) + '.')
        assert round(self.instance.Q.val, 4) == 0.0, msg

        # reset power, change efficiency value and specify heat bus value
        power.set_attr(P=np.nan)
        self.nw.get_conn('h2o').set_attr(T=25, p=1)
        self.nw.get_conn('h2').set_attr(T=50)
        self.instance.set_attr(eta=0.8)
        # check bus function:
        # heat output on component and bus must be indentical
        heat = Bus('heat')
        heat.add_comps({'comp': self.instance, 'param': 'Q'})
        heat.set_attr(P=-8e5)
        self.nw.add_busses(heat)

        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of heat flow must be ' + str(heat.P.val) + ', is ' +
               str(self.instance.Q.val) + '.')
        assert round(heat.P.val, 1) == round(self.instance.Q.val), msg
        self.nw.save('tmp')

        # check bus function:
        # heat output on component and bus must identical (offdesign test)
        Q = heat.P.val * 0.9
        heat.set_attr(P=Q)
        self.nw.solve('offdesign', design_path='tmp')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of heat flow must be ' + str(Q) + ', is ' +
               str(self.instance.Q.val) + '.')
        assert round(Q, 1) == round(self.instance.Q.val), msg

        # delete both busses again
        self.nw.del_busses(heat, power)

        # test efficiency vs. specific energy consumption
        self.nw.get_conn('h2').set_attr(m=0.1)
        self.instance.set_attr(eta=0.9, e='var')
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of efficiency must be ' + str(self.instance.eta.val) +
               ', is ' + str(self.instance.e0 / self.instance.e.val) + '.')
        eta = round(self.instance.eta.val, 2)
        eta_calc = round(self.instance.e0 / self.instance.e.val, 2)
        assert eta == eta_calc, msg

        # test efficiency value > 1, Q must be larger than 0
        e = 130e6
        self.instance.set_attr(e=np.nan, eta=np.nan)
        self.instance.set_attr(e=e)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        # test efficiency
        msg = ('Value of efficiency must be ' + str(self.instance.e0 / e) +
               ', is ' + str(self.instance.eta.val) + '.')
        eta = round(self.instance.e0 / e, 2)
        eta_calc = round(self.instance.eta.val, 2)
        assert eta == eta_calc, msg
        # test Q
        msg = ('Value of heat must be larger than zero, is ' +
               str(self.instance.Q.val) + '.')
        assert self.instance.Q.val > 0, msg

        # test specific energy consumption
        e = 150e6
        self.instance.set_attr(e=np.nan, eta=np.nan)
        self.instance.set_attr(e=e)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of specific energy consumption e must be ' + str(e) +
               ', is ' + str(self.instance.e.val) + '.')
        assert round(e, 1) == round(self.instance.e.val, 1), msg

        # test cooling loop pressure ratio, zeta as variable value
        pr = 0.95
        self.instance.set_attr(pr=pr,
                               e=None,
                               eta=None,
                               zeta='var',
                               P=2e7,
                               design=['pr'])
        self.nw.solve('design')
        shutil.rmtree('./tmp', ignore_errors=True)
        self.nw.save('tmp')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of pressure ratio must be ' + str(pr) + ', is ' +
               str(self.instance.pr.val) + '.')
        assert round(pr, 2) == round(self.instance.pr.val, 2), msg

        # use zeta as offdesign parameter, at design point pressure
        # ratio must not change
        self.instance.set_attr(zeta=np.nan, offdesign=['zeta'])
        self.nw.solve('offdesign', design_path='tmp')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of pressure ratio must be ' + str(pr) + ', is ' +
               str(self.instance.pr.val) + '.')
        assert round(pr, 2) == round(self.instance.pr.val, 2), msg

        # test heat output specification in offdesign mode
        Q = self.instance.Q.val * 0.9
        self.instance.set_attr(Q=Q, P=np.nan)
        self.nw.solve('offdesign', design_path='tmp')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of heat must be ' + str(Q) + ', is ' +
               str(self.instance.Q.val) + '.')
        assert round(Q, 0) == round(self.instance.Q.val, 0), msg
        shutil.rmtree('./tmp', ignore_errors=True)
Beispiel #7
0
class TestGasturbine:
    def setup_CombustionChamber_model(self):
        """Set up the model using the combustion chamber."""
        # %% network setup
        fluid_list = ['Ar', 'N2', 'O2', 'CO2', 'CH4', 'H2O']
        self.nw1 = Network(fluids=fluid_list,
                           p_unit='bar',
                           T_unit='C',
                           p_range=[0.5, 20])

        # %% components
        amb = Source('ambient')
        sf = Source('fuel')
        cc = CombustionChamber('combustion')
        cp = Compressor('compressor')
        gt = Turbine('turbine')
        fg = Sink('flue gas outlet')

        # %% connections
        amb_cp = Connection(amb, 'out1', cp, 'in1')
        cp_cc = Connection(cp, 'out1', cc, 'in1')
        sf_cc = Connection(sf, 'out1', cc, 'in2')
        cc_gt = Connection(cc, 'out1', gt, 'in1', label='flue gas after cc')
        gt_fg = Connection(gt, 'out1', fg, 'in1', label='flue gas after gt')

        self.nw1.add_conns(amb_cp, cp_cc, sf_cc, cc_gt, gt_fg)

        # %% component parameters
        cc.set_attr(lamb=3)
        cp.set_attr(eta_s=0.9, pr=15)
        gt.set_attr(eta_s=0.9)

        # %% connection parameters
        amb_cp.set_attr(T=20,
                        p=1,
                        m=100,
                        fluid={
                            'Ar': 0.0129,
                            'N2': 0.7553,
                            'H2O': 0,
                            'CH4': 0,
                            'CO2': 0.0004,
                            'O2': 0.2314
                        })
        sf_cc.set_attr(T=20,
                       fluid={
                           'CO2': 0.04,
                           'Ar': 0,
                           'N2': 0,
                           'O2': 0,
                           'H2O': 0,
                           'CH4': 0.96
                       })
        gt_fg.set_attr(p=1)

        # %% solving
        mode = 'design'
        self.nw1.solve(mode=mode)

    def setup_CombustionChamberStoich_model(self):
        """Set up the model using the stoichimetric combustion chamber."""
        # %% network setup
        fluid_list = ['myAir', 'myFuel', 'myFuel_fg']
        self.nw2 = Network(fluids=fluid_list,
                           p_unit='bar',
                           T_unit='C',
                           p_range=[0.5, 20],
                           T_range=[10, 2000])

        # %% components
        amb = Source('ambient')
        sf = Source('fuel')
        cc = CombustionChamberStoich('combustion')
        cp = Compressor('compressor')
        gt = Turbine('turbine')
        fg = Sink('flue gas outlet')

        # %% connections
        amb_cp = Connection(amb, 'out1', cp, 'in1')
        cp_cc = Connection(cp, 'out1', cc, 'in1')
        sf_cc = Connection(sf, 'out1', cc, 'in2')
        cc_gt = Connection(cc, 'out1', gt, 'in1', label='flue gas after cc')
        gt_fg = Connection(gt, 'out1', fg, 'in1', label='flue gas after gt')

        self.nw2.add_conns(amb_cp, cp_cc, sf_cc, cc_gt, gt_fg)

        # %% component parameters
        cc.set_attr(fuel={
            'CH4': 0.96,
            'CO2': 0.04
        },
                    air={
                        'Ar': 0.0129,
                        'N2': 0.7553,
                        'CO2': 0.0004,
                        'O2': 0.2314
                    },
                    fuel_alias='myFuel',
                    air_alias='myAir',
                    lamb=3)
        cp.set_attr(eta_s=0.9, pr=15)
        gt.set_attr(eta_s=0.9)

        # %% connection parameters
        amb_cp.set_attr(T=20,
                        p=1,
                        m=100,
                        fluid={
                            'myAir': 1,
                            'myFuel': 0,
                            'myFuel_fg': 0
                        })
        sf_cc.set_attr(T=20, fluid={'myAir': 0, 'myFuel': 1, 'myFuel_fg': 0})
        gt_fg.set_attr(p=1)

        # %% solving
        self.nw2.solve(mode='design')

    def test_models(self):
        """Tests the results of both gas turbine models."""
        self.setup_CombustionChamber_model()
        self.setup_CombustionChamberStoich_model()
        m1 = round(self.nw1.get_conn('flue gas after cc').m.val, 6)
        m2 = round(self.nw2.get_conn('flue gas after cc').m.val, 6)
        msg = ('The outlet mass flow of the combustion chamber model is ' +
               str(m1) +
               ' while the outlet mass flow of the combustion chamber '
               'stoich model is ' + str(m2) + '. Both values should match.')

        assert m1 == m2, msg

        T1 = self.nw1.get_conn('flue gas after cc').T.val_SI
        T2 = self.nw2.get_conn('flue gas after cc').T.val_SI
        d_rel = abs(T2 - T1) / T1
        msg = ('The relative deviation in temperature after combustion is ' +
               str(d_rel) + ' with a maximum allowed value of 1e-3.')

        assert d_rel <= 1e-3, msg

        T1 = self.nw1.get_conn('flue gas after gt').T.val_SI
        T2 = self.nw2.get_conn('flue gas after gt').T.val_SI
        d_rel = abs(T2 - T1) / T1
        msg = ('The relative deviation in temperature after the turbine is ' +
               str(d_rel) + ' with a maximum allowed value of 1e-3.')

        assert d_rel <= 1e-3, msg

        shutil.rmtree('LUT', ignore_errors=True)
Beispiel #8
0
class TestExpansion:
    def setup(self):
        self.Tamb = 20
        self.pamb = 1
        fluids = ['Air']

        # turbine part
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # components
        so = Source('inlet')
        tu = Turbine('compressor')
        si = Sink('outlet')

        # fuel exergy bus
        self.exergy_fuel = Bus('fuel exergy')
        self.exergy_fuel.add_comps({'comp': si}, {'comp': so, 'base': 'bus'})
        # product exergy bus
        self.exergy_prod = Bus('product exergy')
        self.exergy_prod.add_comps({'comp': tu, 'char': 0.9})

        # create connections
        c1 = Connection(so, 'out1', tu, 'in1', '1')
        c2 = Connection(tu, 'out1', si, 'in1', '2')
        self.nw.add_conns(c1, c2)

        # component parameters
        tu.set_attr(eta_s=0.85, pr=1 / 5)

        # connection parameters
        c1.set_attr(m=2, p=10, fluid={'Air': 1})
        c2.set_attr(T=self.Tamb)

        # solve network
        self.nw.solve('design')

    def test_larger_T0(self):
        self.nw.get_conn('2').set_attr(T=self.Tamb + 10)
        self.nw.solve('design')
        self.run_analysis()

    def test_T0_cross(self):
        self.nw.get_conn('2').set_attr(T=self.Tamb - 30)
        self.nw.solve('design')
        self.run_analysis()

    def test_smaller_T0(self):

        self.nw.get_conn('1').set_attr(T=self.Tamb - 10)
        self.nw.get_conn('2').set_attr(T=None)
        self.nw.solve('design')
        self.run_analysis()

    def run_analysis(self):

        ean = ExergyAnalysis(self.nw,
                             E_P=[self.exergy_prod],
                             E_F=[self.exergy_fuel])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + '.')
        assert abs(exergy_balance) <= err**0.5, msg

        E_D_agg = ean.aggregation_data['E_D'].sum()
        E_D_nw = ean.network_data.loc['E_D']
        msg = ('The exergy destruction of the aggregated components and '
               'respective busses (' + str(round(E_D_agg)) +
               ') must be equal to '
               'the exergy destruction of the network (' + str(round(E_D_nw)) +
               ').')
        assert E_D_agg == E_D_nw, msg
Beispiel #9
0
class TestBusses:
    def setup(self):
        """Set up the model."""
        # %% network setup
        fluid_list = ['Ar', 'N2', 'O2', 'CO2', 'CH4', 'H2O']
        self.nw = Network(fluids=fluid_list,
                          p_unit='bar',
                          T_unit='C',
                          p_range=[0.5, 20])

        # %% components
        amb = Source('ambient')
        sf = Source('fuel')
        cc = CombustionChamber('combustion')
        cp = Compressor('compressor')
        gt = Turbine('turbine')
        fg = Sink('flue gas outlet')

        # %% connections
        amb_cp = Connection(amb, 'out1', cp, 'in1', label='ambient air flow')
        cp_cc = Connection(cp, 'out1', cc, 'in1')
        sf_cc = Connection(sf, 'out1', cc, 'in2')
        cc_gt = Connection(cc, 'out1', gt, 'in1')
        gt_fg = Connection(gt, 'out1', fg, 'in1')

        self.nw.add_conns(amb_cp, cp_cc, sf_cc, cc_gt, gt_fg)

        # %% component parameters
        cc.set_attr(lamb=3)
        cp.set_attr(eta_s=0.9, pr=15)
        gt.set_attr(eta_s=0.9)

        # %% connection parameters
        amb_cp.set_attr(T=20,
                        p=1,
                        m=100,
                        fluid={
                            'Ar': 0.0129,
                            'N2': 0.7553,
                            'H2O': 0,
                            'CH4': 0,
                            'CO2': 0.0004,
                            'O2': 0.2314
                        })
        sf_cc.set_attr(T=20,
                       fluid={
                           'CO2': 0.04,
                           'Ar': 0,
                           'N2': 0,
                           'O2': 0,
                           'H2O': 0,
                           'CH4': 0.96
                       })
        gt_fg.set_attr(p=1)

        # motor efficiency
        x = np.array([
            0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
            0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15,
            1.2, 10
        ])
        y = np.array([
            0.01, 0.3148, 0.5346, 0.6843, 0.7835, 0.8477, 0.8885, 0.9145,
            0.9318, 0.9443, 0.9546, 0.9638, 0.9724, 0.9806, 0.9878, 0.9938,
            0.9982, 0.999, 0.9995, 0.9999, 1, 0.9977, 0.9947, 0.9909, 0.9853,
            0.9644
        ]) * 0.975
        self.motor_bus_based = CharLine(x=x, y=y)
        self.motor_comp_based = CharLine(x=x, y=1 / y)

        # generator efficiency
        x = np.array([
            0.100, 0.345, 0.359, 0.383, 0.410, 0.432, 0.451, 0.504, 0.541,
            0.600, 0.684, 0.805, 1.000, 1.700, 10
        ])
        y = np.array([
            0.976, 0.989, 0.990, 0.991, 0.992, 0.993, 0.994, 0.995, 0.996,
            0.997, 0.998, 0.999, 1.000, 0.999, 0.99
        ]) * 0.975
        self.generator = CharLine(x=x, y=y)

        power_bus_total = Bus('total power output')
        power_bus_total.add_comps(
            {
                'comp': cp,
                'char': self.motor_bus_based,
                'base': 'bus'
            }, {
                'comp': gt,
                'char': self.generator
            })

        thermal_input = Bus('thermal input')
        thermal_input.add_comps({'comp': cc})

        compressor_power_comp = Bus('compressor power input')
        compressor_power_comp.add_comps({
            'comp': cp,
            'char': self.motor_comp_based
        })

        compressor_power_bus = Bus('compressor power input bus based')
        compressor_power_bus.add_comps({
            'comp': cp,
            'char': self.motor_bus_based,
            'base': 'bus'
        })

        self.nw.add_busses(power_bus_total, thermal_input,
                           compressor_power_comp, compressor_power_bus)

        # %% solving
        self.nw.solve('design')
        self.nw.save('tmp')

    def test_model(self):
        """Test the bus functionalities in a gas turbine model."""
        tpo = self.nw.busses['total power output']
        ti = self.nw.busses['thermal input']
        cpi = self.nw.busses['compressor power input']
        cpibb = self.nw.busses['compressor power input bus based']

        cp = self.nw.get_comp('compressor')
        gt = self.nw.get_comp('turbine')
        cc = self.nw.get_comp('combustion')

        # test results of design case

        eta_cpi = round(1 / cp.calc_bus_efficiency(cpi), 6)
        eta_cp_tpo = round(cp.calc_bus_efficiency(tpo), 6)
        msg = ('The efficiency value of the compressor on the bus ' +
               tpo.label + ' (' + str(eta_cp_tpo) +
               ') must be identical to the efficiency '
               'on the bus ' + cpi.label + ' (' + str(eta_cpi) + ').')
        assert eta_cp_tpo == eta_cpi, msg

        P_cp_tpo = cp.calc_bus_value(tpo)
        eta_cp_tpo = cp.calc_bus_efficiency(tpo)
        P_cp = round(P_cp_tpo * eta_cp_tpo, 0)
        msg = ('The compressor power must be ' + str(round(cp.P.val, 0)) +
               ' on '
               'the bus ' + tpo.label + ' but is ' + str(P_cp) + ').')
        assert round(cp.P.val, 0) == P_cp, msg

        P_cp_tpo = round(
            cp.calc_bus_value(tpo) * cp.calc_bus_efficiency(tpo), 0)
        P_cp_cpi = round(
            cp.calc_bus_value(cpi) / cp.calc_bus_efficiency(cpi), 0)
        P_cp_cpibb = round(
            cp.calc_bus_value(cpibb) * cp.calc_bus_efficiency(cpibb), 0)
        msg = (
            'The busses\' component power value for the compressor on bus ' +
            tpo.label + ' (' + str(P_cp_tpo) + ') must be equal to the '
            'component power on all other busses. Bus ' + cpi.label + ' (' +
            str(P_cp_cpi) + ') and bus ' + cpibb.label + ' (' +
            str(P_cp_cpibb) + ').')
        assert P_cp_tpo == P_cp_cpi and P_cp_tpo == P_cp_cpibb, msg

        eta_gt_tpo = gt.calc_bus_efficiency(tpo)
        msg = ('The efficiency value of the turbine on the bus ' + tpo.label +
               ' (' + str(eta_gt_tpo) + ') must be equal to 0.975.')
        assert eta_gt_tpo == 0.975, msg

        eta_ti = cc.calc_bus_efficiency(ti)
        msg = ('The efficiency value of the combustion chamber on the bus ' +
               ti.label + ' (' + str(eta_ti) + ') must be equal to 1.0.')
        assert eta_ti == 1.0, msg

        # test partload for bus functions
        # first test in identical conditions

        self.nw.get_conn('ambient air flow').set_attr(m=None)
        P_design = cpibb.P.val
        cpibb.set_attr(P=P_design)
        self.nw.solve('offdesign', design_path='tmp')

        eta_cpi = round(1 / cp.calc_bus_efficiency(cpi), 6)
        eta_cp_tpo = round(cp.calc_bus_efficiency(tpo), 6)
        msg = ('The efficiency value of the compressor on the bus ' +
               tpo.label + ' (' + str(eta_cp_tpo) +
               ') must be identical to the efficiency '
               'on the bus ' + cpi.label + ' (' + str(eta_cpi) + ').')
        assert eta_cp_tpo == eta_cpi, msg

        eta_gt_tpo = gt.calc_bus_efficiency(tpo)
        msg = ('The efficiency value of the turbine on the bus ' + tpo.label +
               ' (' + str(eta_gt_tpo) + ') must be equal to 0.975.')
        assert eta_gt_tpo == 0.975, msg

        P_cp_tpo = round(
            cp.calc_bus_value(tpo) * cp.calc_bus_efficiency(tpo), 0)
        P_cp_cpi = round(
            cp.calc_bus_value(cpi) / cp.calc_bus_efficiency(cpi), 0)
        P_cp_cpibb = round(
            cp.calc_bus_value(cpibb) * cp.calc_bus_efficiency(cpibb), 0)
        msg = (
            'The busses\' component power value for the compressor on bus ' +
            tpo.label + ' (' + str(P_cp_tpo) + ') must be equal to the '
            'component power on all other busses. Bus ' + cpi.label + ' (' +
            str(P_cp_cpi) + ') and bus ' + cpibb.label + ' (' +
            str(P_cp_cpibb) + ').')
        assert P_cp_tpo == P_cp_cpi and P_cp_tpo == P_cp_cpibb, msg

        # 60 % load
        load = 0.6
        cpibb.set_attr(P=P_design * load)
        self.nw.solve('offdesign', design_path='tmp')

        eta_cp_tpo = round(cp.calc_bus_efficiency(tpo), 6)
        eta_cp_char = self.motor_bus_based.evaluate(load)
        msg = ('The efficiency value of the compressor on the bus ' +
               tpo.label + ' (' + str(eta_cp_tpo) +
               ') must be identical to the efficiency '
               'on the characteristic line (' + str(eta_cp_char) + ').')
        assert eta_cp_tpo == eta_cp_char, msg

        load_frac = round(
            cp.calc_bus_value(tpo) / tpo.comps.loc[cp, 'P_ref'], 6)
        msg = ('The load fraction value of the compressor on the bus ' +
               tpo.label + ' (' + str(load_frac) +
               ') must be identical to the '
               'load fraction value on the bus ' + cpibb.label + ' (' +
               str(load) + ').')
        assert load == load_frac, msg

        eta_cpi = round(1 / cp.calc_bus_efficiency(cpi), 6)
        eta_cp_tpo = round(cp.calc_bus_efficiency(tpo), 6)
        msg = ('The efficiency value of the compressor on the bus ' +
               tpo.label + ' (' + str(eta_cp_tpo) +
               ') must be higher than the efficiency '
               'on the bus ' + cpi.label + ' (' + str(eta_cpi) + ').')
        assert eta_cp_tpo > eta_cpi, msg

        P_cp_tpo = round(
            cp.calc_bus_value(tpo) * cp.calc_bus_efficiency(tpo), 0)
        P_cp_cpi = round(
            cp.calc_bus_value(cpi) / cp.calc_bus_efficiency(cpi), 0)
        P_cp_cpibb = round(
            cp.calc_bus_value(cpibb) * cp.calc_bus_efficiency(cpibb), 0)
        msg = (
            'The busses\' component power value for the compressor on bus ' +
            tpo.label + ' (' + str(P_cp_tpo) + ') must be equal to the '
            'component power on all other busses. Bus ' + cpi.label + ' (' +
            str(P_cp_cpi) + ') and bus ' + cpibb.label + ' (' +
            str(P_cp_cpibb) + ').')
        assert P_cp_tpo == P_cp_cpi and P_cp_tpo == P_cp_cpibb, msg

        shutil.rmtree('tmp', ignore_errors=True)