Beispiel #1
0
def run():
    score_max = -1.0
    best_epoch = 0
    weight = torch.from_numpy(train_data.weight).float()    # weight for all class
    weight = to_var(weight)                                 #

    optimizer = optim.Adam(params=net.parameters(), lr=learning_rate, betas=(0.9, 0.999))
    criterion = nn.CrossEntropyLoss(weight=weight)

    for epoch in range(1, epochs + 1):
        print('epoch....................................' + str(epoch))
        train_loss = []
        # *************** train model ***************
        print('train ....')
        net.train()
        for step, (image, label, index) in enumerate(train_dataset):
            image = to_var(image)    # 4D tensor   bz * 4(modal) * 240 * 240
            label = to_var(label)    # 3D tensor   bz * 240 * 240 (value 0-4)

            optimizer.zero_grad()       #
            predicts = net(image)    # 4D tensor   bz * 5(class) * 240 * 240
            loss_train = criterion(predicts, label.long())
            train_loss.append(float(loss_train))
            loss_train.backward()
            optimizer.step()

            # ****** save sample image for each epoch ******
            if step % 200 == 0:
                print('..step ....%d' % step)
                print('....loss....%f' %loss_train)
                predicts = one_hot_reverse(predicts)  # 3D long Tensor  bz * 240 * 240 (val 0-4)
                save_train_images(image, predicts, label, index, epoch, save_dir=save_dir)

        # ***************** calculate valid loss *****************
        print('valid ....')
        current_score, valid_loss = evaluation(net, valid_dataset, criterion, save_dir=None)

        # **************** save loss for one batch ****************
        print('train_epoch_loss ' + str(sum(train_loss) / (len(train_loss) * 1.0)) )
        print('valid_epoch_loss ' + str(sum(valid_loss) / (len(valid_loss) * 1.0)) )

        # **************** save model ****************
        if current_score > score_max:
            best_epoch = epoch
            torch.save(net.state_dict(),
                       os.path.join(save_dir , 'best_epoch.pth'))
            score_max = current_score
        print('valid_meanIoU_max ' + str(score_max))
        print('Current Best epoch is %d' % best_epoch)

        if epoch == epochs:
            torch.save(net.state_dict(),
                       os.path.join(save_dir, 'final_epoch.pth'))

    print('Best epoch is %d' % best_epoch)
    print('done!')
Beispiel #2
0
def Training():
    print('Training')

    ####################################################################
    ## Hyper parameter
    ####################################################################
    print('Initializing hyper parameter')

    vis = visdom.Visdom()
    loss_window = vis.line(X=torch.zeros((1, )).cpu(),
                           Y=torch.zeros((1)).cpu(),
                           opts=dict(xlabel='epoch',
                                     ylabel='Loss',
                                     title='Training Loss',
                                     legend=['Loss']))

    #########################################################################
    ## Get dataset
    #########################################################################
    print("Get dataset")
    loader = Generator()

    ##############################
    ## Get agent and model
    ##############################
    print('Get agent')
    if p.model_path == "":
        lane_assistant = Assistant.Assistant()
    else:
        lane_assistant = Assistant.Assistant()
        lane_assistant.load_weights(1912, "tensor(0.9420)")

    ##############################
    ## Check GPU
    ##############################
    print('Setup GPU mode')
    if torch.cuda.is_available():
        lane_assistant.cuda()
        #torch.backends.cudnn.benchmark=True

    ##############################
    ## Loop for training
    ##############################
    print('Training loop')
    step = 0
    sampling_list = None

    for epoch in range(p.n_epoch):
        lane_assistant.training_mode()
        for inputs, target_lanes, target_h, test_image, data_list in loader.Generate(
                sampling_list):
            #training
            #util.visualize_points(inputs[0], target_lanes[0], target_h[0])
            print("epoch : " + str(epoch))
            print("step : " + str(step))
            loss_p = lane_assistant.train(inputs, target_lanes, target_h,
                                          epoch, lane_assistant, data_list)
            torch.cuda.synchronize()
            loss_p = loss_p.cpu().data

            if step % 50 == 0:
                vis.line(X=torch.ones((1, 1)).cpu() * int(step / 50),
                         Y=torch.Tensor([loss_p]).unsqueeze(0).cpu(),
                         win=loss_window,
                         update='append')

            if step % 100 == 0:
                lane_assistant.save_model(int(step / 100), loss_p)
                testing(lane_assistant, test_image, step, loss_p)
            step += 1

        sampling_list = copy.deepcopy(lane_assistant.get_data_list())
        lane_assistant.sample_reset()

        #evaluation
        if epoch >= 0 and epoch % 1 == 0:
            print("evaluation")
            lane_assistant.evaluate_mode()
            th_list = [0.8]
            index = [3]
            lane_assistant.save_model(int(step / 100), loss_p)

            for idx in index:
                print("generate result")
                test.evaluation(loader,
                                lane_assistant,
                                index=idx,
                                name="test_result_" + str(epoch) + "_" +
                                str(idx) + ".json")

            for idx in index:
                print("compute score")
                with open(
                        "/home/kym/Dropbox/eval_result2_" + str(idx) + "_.txt",
                        'a') as make_file:
                    make_file.write("epoch : " + str(epoch) + " loss : " +
                                    str(loss_p.cpu().data))
                    make_file.write(
                        evaluation.LaneEval.bench_one_submit(
                            "test_result_" + str(epoch) + "_" + str(idx) +
                            ".json", "test_label.json"))
                    make_file.write("\n")
                with open("eval_result_" + str(idx) + "_.txt",
                          'a') as make_file:
                    make_file.write("epoch : " + str(epoch) + " loss : " +
                                    str(loss_p.cpu().data))
                    make_file.write(
                        evaluation.LaneEval.bench_one_submit(
                            "test_result_" + str(epoch) + "_" + str(idx) +
                            ".json", "test_label.json"))
                    make_file.write("\n")

        if int(step) > 700000:
            break
Beispiel #3
0
## ENTRAINEMENT DU MODELE ##
# a partir des fonctions presente dans train.py

# Pour le CNN, on doit reshape les data x_train au format (*, 28,28,1)
x_train = np.reshape(x_train.values, (-1, 28, 28, 1))
#print(x_train.shape)
entrainement(x_train, y_train, model1, 'categorical_crossentropy', 'adam',
             ['accuracy'])
''' On visualisera l'apprentissage sur Tensorboard.
Pour cela il faut taper la commande "tensorboard --logdir trainings", car
trainings est le dossier dans lequel s'enregistrent les data d'apprentissage.

Puis il faut ouvrir l'url que nous renvoie le terminal.
(pour moi: http://localhost:6006/) '''

## EVALUATION ##
# a partir des fonctions presente dans test.py

p_train, train_acc, train_cmat = evaluation(x_train, y_train, model1)
#print("Confusion train\n", train_cmat)
#print("Acc train\n", train_acc)

## TEST DE NOTRE MODELE SUR DE NOUVELLES DATA ##

x_test = importation("data/test.csv")
x_test = keras.utils.normalize(x_test)
x_test = np.reshape(x_test.values, (-1, 28, 28, 1))
p_test = model1.predict(x_test)
submission('submission_cnn.csv', p_test)
Beispiel #4
0
def Training():
    print('Training')

    ####################################################################
    ## Hyper parameter
    ####################################################################
    print('Initializing hyper parameter')

    vis = visdom.Visdom()
    loss_window = vis.line(X=torch.zeros((1, )).cpu(),
                           Y=torch.zeros((1)).cpu(),
                           opts=dict(xlabel='epoch',
                                     ylabel='Loss',
                                     title='Training Loss',
                                     legend=['Loss']))

    #########################################################################
    ## Get dataset
    #########################################################################
    print("Get dataset")
    loader = Generator()

    ##############################
    ## Get agent and model
    ##############################
    print('Get agent')
    if p.model_path == "":
        lane_agent = agent.Agent()
    else:
        lane_agent = agent.Agent()
        lane_agent.load_weights(4235, "tensor(0.2127)")

    ##############################
    ## Check GPU
    ##############################
    print('Setup GPU mode')
    if torch.cuda.is_available():
        lane_agent.cuda()

    ##############################
    ## Loop for training
    ##############################
    print('Training loop')
    step = 0
    for epoch in range(p.n_epoch):
        lane_agent.training_mode()
        for inputs, target_lanes, target_h, test_image in loader.Generate():
            #training
            print("epoch : " + str(epoch))
            print("step : " + str(step))
            loss_p = lane_agent.train(inputs, target_lanes, target_h, epoch,
                                      lane_agent)
            loss_p = loss_p.cpu().data

            if step % 50 == 0:
                vis.line(X=torch.ones((1, 1)).cpu() * int(step / 50),
                         Y=torch.Tensor([loss_p]).unsqueeze(0).cpu(),
                         win=loss_window,
                         update='append')

            if step % 100 == 0:
                lane_agent.save_model(int(step / 100), loss_p)
                testing(lane_agent, test_image, step, loss_p)
            step += 1

        #evaluation
        if epoch > 0 and epoch % 10 == 0:
            print("evaluation")
            lane_agent.evaluate_mode()
            th_list = [0.3, 0.5, 0.7]
            lane_agent.save_model(int(step / 100), loss_p)

            for th in th_list:
                print("generate result")
                print(th)
                test.evaluation(loader,
                                lane_agent,
                                thresh=th,
                                name="test_result_" + str(epoch) + "_" +
                                str(th) + ".json")

            for th in th_list:
                print("compute score")
                print(th)
                with open("eval_result_" + str(th) + "_.txt",
                          'a') as make_file:
                    make_file.write("epoch : " + str(epoch) + " loss : " +
                                    str(loss_p.cpu().data))
                    make_file.write(
                        evaluation.LaneEval.bench_one_submit(
                            "test_result_" + str(epoch) + "_" + str(th) +
                            ".json", "test_label.json"))
                    make_file.write("\n")

        if int(step) > 700000:
            break
Beispiel #5
0
def run_exp(config):
    
    warnings.filterwarnings('ignore')
    logger = config.get_logger('train')

    leaderboard_path = config._args.leaderboard
    Path(leaderboard_path).parent.mkdir(exist_ok=True, parents=True)
    with open(leaderboard_path, 'a') as f:
        txt_path = f"{config._log_dir}/preds.txt"
        print(txt_path, file=f, flush=True)

    expert_dims, raw_input_dims = compute_dims(config, logger)
    trn_config = compute_trn_config(config)

    if config._args.group_seed:
        seeds = [int(config._args.group_seed)]
    else:
        seeds = [int(x) for x in config._args.seeds.split(",")]

    # set up local filesystem on the cluster
    if socket.gethostname().endswith("cluster"):
        os.system(str(Path.home() / "configure_tmp_data.sh"))

    for ii, seed in enumerate(seeds):
        tic = time.time()
        logger.info(f"{ii + 1}/{len(seeds)} Setting experiment random seed to {seed}")
        set_seeds(seed)
        config["seed"] = seed

        # We use cls defaults for backwards compatibility with the MMIT configs.  In the
        # long run this should be handled by the json configs themselves
        cls_defaults = ["train", "val", "tiny", "challenge"]

        model = config.init(
            name='arch',
            module=module_arch,
            expert_dims=expert_dims,
            text_dim=config["experts"]["text_dim"],
            disable_nan_checks=config["disable_nan_checks"],
            spatial_feats=config["data_loader"]["args"].get("spatial_feats", False),
            task=config.get("task", "retrieval"),
            ce_shared_dim=config["experts"].get("ce_shared_dim", None),
            feat_aggregation=config["data_loader"]["args"]["feat_aggregation"],
            trn_config=trn_config,
            trn_cat=config["data_loader"]["args"].get("trn_cat", 0),
        )
        logger.info(model)

        data_loaders = config.init(
            name='data_loader',
            module=module_data,
            logger=logger,
            raw_input_dims=raw_input_dims,
            text_feat=config["experts"]["text_feat"],
            text_dim=config["experts"]["text_dim"],
            text_agg=config["experts"]["text_agg"],
            use_zeros_for_missing=config["experts"].get("use_zeros_for_missing", False),
            task=config.get("task", "retrieval"),
            cls_partitions=config.get("cls_partitions", cls_defaults)
        )

        if config.get("manual_linear_init", False):
            logger.info("manually setting init for linear layers")
            def init_weights(m):
                if isinstance(m, nn.Linear):
                    torch.nn.init.xavier_uniform(m.weight)
                    m.bias.data.fill_(0.01)
            model.apply(init_weights)

        loss = config.init(name="loss", module=module_loss)
        metrics = [getattr(module_metric, met) for met in config['metrics']]
        trainable_params = filter(lambda p: p.requires_grad, model.parameters())

        if config["optimizer"]["type"] == "RAdam":
            optimizer = config.init('optimizer', radam, trainable_params)
        elif config["optimizer"]["type"] == "Ranger":
            optimizer = config.init('optimizer', ranger, trainable_params)
        elif config["optimizer"]["type"] == "SWATS":
            optimizer = config.init('optimizer', swats, trainable_params)
        else:
            optimizer = config.init('optimizer', torch.optim, trainable_params)

        if config["lr_scheduler"]["type"] == "StepLR":
            lr_scheduler = config.init('lr_scheduler', torch.optim.lr_scheduler,
                                       optimizer)
        else:
            lr_scheduler = config.init('lr_scheduler', cos_restart, optimizer)

        visualizer = config.init(
            name='visualizer',
            module=module_vis,
            exp_name=config._exper_name,
            web_dir=config._web_log_dir,
        )

        trainer = Trainer(
            model,
            loss,
            metrics,
            optimizer,
            config=config,
            data_loaders=data_loaders,
            lr_scheduler=lr_scheduler,
            mini_train=config._args.mini_train,
            disable_nan_checks=config["disable_nan_checks"],
            visualizer=visualizer,
            val_freq=config["trainer"].get("val_freq", 1),
            force_cpu_val=config.get("force_cpu_val", False),
            skip_first_n_saves=config["trainer"].get("skip_first_n_saves", 0),
            include_optim_in_ckpts=config["trainer"].get("include_optim_in_ckpts", 1),
            cache_targets=set(config.get("cache_targets", [])),
        )
        trainer.train()
        best_ckpt_path = config.save_dir / "trained_model.pth"
        duration = time.strftime('%Hh%Mm%Ss', time.gmtime(time.time() - tic))
        logger.info(f"Training took {duration}")

        if config._config.get("eval_settings", False):
            eval_config = copy.deepcopy(config)
            merge(eval_config._config, config["eval_settings"], strategy=Strategy.REPLACE)
            eval_config._args.resume = best_ckpt_path
            evaluation(eval_config, logger=logger, trainer=trainer)

    # If multiple runs were conducted, report relevant statistics
    if len(seeds) > 1:
        log_summary(
            logger=logger,
            log_path=config.log_path,
            eval_mode=config["eval_mode"],
            fixed_num_epochs=config["trainer"]["epochs"],
        )
    print(f"Log file stored at {config.log_path}")

    # Report the location of the "best" checkpoint of the final seeded run (here
    # "best" corresponds to the model with the highest geometric mean over the
    # R@1, R@5 and R@10 metrics when a validation set is used, or simply the final
    # epoch of training for fixed-length schedules).
    print(f"The best performing ckpt can be found at {str(best_ckpt_path)}")
Beispiel #6
0
def main():
    args = parse_parameters()
    print('*' * 50)
    print('DeepLab_v3_plus <==> Prepare for Dataset <==> Begin')
    train_dataloader = prepare_for_train_dataloader(
        args.dataroot,
        bs_train=args.train_batchsize_per_gpu * args.gpu,
        shuffle=True,
        num_workers=args.j,
        check_dataloader=args.check_dataloader)
    val_dataloader = prepare_for_val_dataloader(args.dataroot,
                                                bs_val=args.test_batchsize,
                                                shuffle=False,
                                                num_workers=args.j)
    print('DeepLab_v3_plus <==> Prepare for Dataset <==> Done\n\n')
    sys.exit(0)

    # network
    print('*' * 50)
    print('DeepLab_v3_plus <==> Prepare for Network <==> Begin')
    net = DeepLabv3_plus(nInputChannels=3,
                         n_classes=21,
                         os=16,
                         pretrained=True,
                         _print=True)
    optimizer = torch.optim.SGD(net.parameters(),
                                lr=args.init_lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    criterion = cross_entropy2d
    net = nn.DataParallel(net, device_ids=range(args.gpu)) if args.gpu else net
    net = net.cuda()
    cudnn.benchmark = True
    print('DeepLab_v3_plus <==> Resume Network checkpoint <==> Begin')
    if args.resume:
        if os.path.isfile(args.resume):
            checkpoint = torch.load(args.resume)
            start_epoch = checkpoint['epoch'] + 1
            net.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print(
                'DeepLab_v3_plus <==> Resume Network checkpoint, next epoch:{}<==> Begin'
                .format(start_epoch))
    else:
        start_epoch = 0
    print('DeepLab_v3_plus <==> Prepare for Network <==> Done\n\n')

    global_step = 0
    running_loss_tr = 0.0
    print('*' * 50)
    for epoch in range(start_epoch, args.max_epoches):
        # train
        lr, optimizer = adjust_learning_rate(
            args.init_lr,
            optimizer,
            epoch,
            args.max_epoches,
            gamma=0.9,
            decay_step=args.decay_every_epoches)

        train_deeplab_v3_plus(train_dataloader, net, criterion, optimizer,
                              epoch, global_step, running_loss_tr)

        if epoch % args.test_epoches == 0:
            evaluation(val_dataloader, net, epoch, save_dir=args.log_test_dir)

        if epoch % args.save_weights_epoches == 0:
            save_checkpoint(
                {
                    'epoch': epoch,
                    'state_dict': net.state_dict(),
                    'optimizer': optimizer.state_dict(),
                },
                weights_dir=args.weights)
Beispiel #7
0
def Training():
    print('Training')

    # Hyper parameter

    print('Initializing hyper parameter')

    vis = visdom.Visdom()
    loss_window = vis.line(X=torch.zeros((1, )).cpu(),
                           Y=torch.zeros((1)).cpu(),
                           opts=dict(xlabel='epoch',
                                     ylabel='Loss',
                                     title='Training Loss',
                                     legend=['Loss']))

    ## Get dataset

    print("Get dataset")
    loader = Generator()

    ## Get agent and model

    print('Get agent')
    if p.model_path == "":
        lane_agent = agent.Agent()
    else:
        lane_agent = agent.Agent()
        lane_agent.load_weights(1912, "tensor(0.9420)")

    ## Loop for training

    print('Training loop')
    step = 0
    sampling_list = None
    for epoch in range(p.n_epoch):
        lane_agent.training_mode()
        for inputs, target_lanes, target_h, test_image, data_list in loader.Generate(
                sampling_list):
            #training
            #util.visualize_points(inputs[0], target_lanes[0], target_h[0])
            print("epoch : " + str(epoch))
            print("step : " + str(step))
            loss_p = lane_agent.train(inputs, target_lanes, target_h, epoch,
                                      lane_agent, data_list)
            torch.cuda.synchronize()
            loss_p = loss_p.cpu().data

            if step % 50 == 0:
                vis.line(X=torch.ones((1, 1)).cpu() * int(step / 50),
                         Y=torch.Tensor([loss_p]).unsqueeze(0).cpu(),
                         win=loss_window,
                         update='append')

            if step % 100 == 0:
                lane_agent.save_model(int(step / 100), loss_p)
                testing(lane_agent, test_image, step, loss_p)
            step += 1

        sampling_list = copy.deepcopy(lane_agent.get_data_list())
        lane_agent.sample_reset()

        #evaluation
        if epoch >= 0 and epoch % 1 == 0:
            print("evaluation")
            lane_agent.evaluate_mode()
            th_list = [0.8]
            index = [3]
            lane_agent.save_model(int(step / 100), loss_p)

            for idx in index:
                print("generate result")
                test.evaluation(loader,
                                lane_agent,
                                index=idx,
                                name="test_result_" + str(epoch) + "_" +
                                str(idx) + ".json")

        if int(step) > 700000:
            break
Beispiel #8
0
def main(config):
    logger = config.get_logger('train')
    expert_dims, raw_input_dims = compute_dims(config, logger)
    seeds = [int(x) for x in config._args.seeds.split(",")]

    for seed in seeds:
        # Set the random initial seeds
        tic = time.time()
        logger.info(f"Setting experiment random seed to {seed}")
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)

        data_loaders = config.init(
            name='data_loader',
            module=module_data,
            raw_input_dims=raw_input_dims,
            text_feat=config["experts"]["text_feat"],
            text_dim=config["experts"]["text_dim"],
        )

        model = config.init(
            name='arch',
            module=module_arch,
            expert_dims=expert_dims,
            text_dim=config["experts"]["text_dim"],
            disable_nan_checks=config["disable_nan_checks"],
        )
        logger.info(model)

        loss = config.init(name="loss", module=module_loss)
        metrics = [getattr(module_metric, met) for met in config['metrics']]
        trainable_params = filter(lambda p: p.requires_grad,
                                  model.parameters())

        optimizer = config.init('optimizer', torch.optim, trainable_params)
        lr_scheduler = config.init('lr_scheduler', torch.optim.lr_scheduler,
                                   optimizer)
        visualizer = config.init(
            name='visualizer',
            module=module_vis,
            exp_name=config._exper_name,
            log_dir=config._web_log_dir,
        )

        trainer = Trainer(
            model,
            loss,
            metrics,
            optimizer,
            config=config,
            data_loaders=data_loaders,
            lr_scheduler=lr_scheduler,
            mini_train=config._args.mini_train,
            disable_nan_checks=config["disable_nan_checks"],
            visualizer=visualizer,
            skip_first_n_saves=config["trainer"].get("skip_first_n_saves", 0),
            include_optim_in_ckpts=config["trainer"].get(
                "include_optim_in_ckpts", False),
        )
        trainer.train()
        best_ckpt_path = config.save_dir / "trained_model.pth"
        duration = time.strftime('%Hh%Mm%Ss', time.gmtime(time.time() - tic))
        logger.info(f"Training took {duration}")

        # If the dataset supports separate validation/test splits, the training config
        # json should specify an `eval_config` entry with the path to the test
        # configuration
        if config._config.get("eval_config", False):
            eval_args = argparse.ArgumentParser()
            eval_args.add_argument("--config", default=config["eval_config"])
            eval_args.add_argument("--device", default=config._args.device)
            eval_args.add_argument("--resume", default=best_ckpt_path)
            eval_config = ConfigParser(eval_args, slave_mode=True)
            evaluation(eval_config, logger=logger)

    # If multiple runs were conducted, report relevant statistics
    if len(seeds) > 1:
        log_summary(
            logger=logger,
            log_path=config.log_path,
            eval_mode=config["eval_mode"],
            fixed_num_epochs=config["trainer"]["epochs"],
        )
    print(f"Log file stored at {config.log_path}")

    # Report the location of the "best" checkpoint of the final seeded run (here
    # "best" corresponds to the model with the highest geometric mean over the
    # R@1, R@5 and R@10 metrics when a validation set is used, or simply the final
    # epoch of training for fixed-length schedules).
    print(f"The best performing ckpt can be found at {str(best_ckpt_path)}")
Beispiel #9
0
def Training():
    print('Training')

    ####################################################################
    ## Hyper parameter
    ####################################################################
    print('Initializing hyper parameter')

    #########################################################################
    ## Get dataset
    #########################################################################
    print("Get dataset")
    loader = Generator()

    ##############################
    ## Get agent and model
    ##############################
    print('Get agent')
    if p.model_path == "":
        lane_agent = agent.Agent()
        lane_agent.load_weights(50, "tensor(0.2378)", False)  # quan model
    else:
        lane_agent = agent.Agent()
        lane_agent.load_weights(50, "tensor(0.2378)")  # quan model

    ##############################
    ## Check GPU
    ##############################
    print('Setup GPU mode')
    if torch.cuda.is_available():
        lane_agent.cuda()

    ##############################
    ## Loop for training
    ##############################
    print('Training loop')
    step = 0
    sampling_list = None
    for epoch in range(p.n_epoch):
        lane_agent.training_mode()

        for inputs, target_lanes, target_h, test_image, data_list in loader.Generate(
                sampling_list):
            #training
            print("epoch : " + str(epoch))
            print("step : " + str(step))
            loss_p = lane_agent.train(inputs, target_lanes, target_h, epoch,
                                      lane_agent, data_list)
            torch.cuda.synchronize()
            loss_p = loss_p.cpu().data
            step += 1

        sampling_list = copy.deepcopy(lane_agent.get_data_list())
        lane_agent.sample_reset()

        #evaluation
        if epoch >= 0 and epoch % 1 == 0:
            print("evaluation")
            lane_agent.evaluate_mode()
            th_list = [0.8]
            index = [3]
            lane_agent.save_model(int(step / 100), loss_p)

            for idx in index:
                print("generate result")
                test.evaluation(loader,
                                lane_agent,
                                index=idx,
                                name="./eval_res/test_result_" + str(epoch) +
                                "_" + str(idx) + ".json")

            for idx in index:
                print("compute score")
                with open("./eval_res/eval_acc.txt", 'a') as make_file:
                    make_file.write("epoch : " + str(epoch) + " loss : " +
                                    str(loss_p.cpu().data))
                    make_file.write(
                        evaluation.LaneEval.bench_one_submit(
                            "./eval_res/test_result_" + str(epoch) + "_" +
                            str(idx) + ".json", "test_label.json"))
                    make_file.write("\n")

        if int(step) > 50000:
            break

        if epoch > 20:
            # Freeze quantizer parameters
            lane_agent.d_observer()
        if epoch > 20:
            # Freeze batch norm mean and variance estimates
            lane_agent.freeze_bn()
Beispiel #10
0
def Training():
    print('Training')

    ####################################################################
    ## Hyper parameter
    ####################################################################
    print('Initializing hyper parameter')

    vis = visdom.Visdom()
    loss_window = vis.line(X=torch.zeros((1,)).cpu(),
                           Y=torch.zeros((1)).cpu(),
                           opts=dict(xlabel='epoch',
                                     ylabel='Loss',
                                     title='Training Loss',
                                     legend=['Loss']))
    
    #########################################################################
    ## Get dataset
    #########################################################################
    print("Get dataset")
    loader = Generator()

    ##############################
    ## Get agent and model
    ##############################
    print('Get agent')

    if p.model_path == "":
        lane_agent = agent.Agent()
    else:
        lane_agent = agent.Agent()
        lane_agent.load_weights(0, "tensor(1.3984)")

    ##############################
    ## Check GPU
    ##############################
    print('Setup GPU mode')
    if torch.cuda.is_available():
        lane_agent.cuda()
        #torch.backends.cudnn.benchmark=True

    ##############################
    ## Loop for training
    ##############################
    print('Training loop')
    step = 0
    sampling_list = None
    for epoch in range(p.n_epoch):
        lane_agent.training_mode()
        for inputs, target_lanes, target_h, test_image, data_list in loader.Generate(sampling_list):

            #util.visualize_points(inputs[0], target_lanes[0], target_h[0])
            #training
            print("epoch : " + str(epoch))
            print("step : " + str(step))
            loss_p = lane_agent.train(inputs, target_lanes, target_h, epoch, lane_agent, data_list)
            torch.cuda.synchronize()
            loss_p = loss_p.cpu().data
            
            if step%50 == 0:
                vis.line(
                    X=torch.ones((1, 1)).cpu() * int(step/50),
                    Y=torch.Tensor([loss_p]).unsqueeze(0).cpu(),
                    win=loss_window,
                    update='append')
                
            if step%100 == 0:
                lane_agent.save_model(int(step/100), loss_p)
                testing(lane_agent, test_image, step, loss_p)
            step += 1

        sampling_list = copy.deepcopy(lane_agent.get_data_list())
        lane_agent.sample_reset()

        #evaluation
        if epoch%1 == 0:
            print("evaluation")
            lane_agent.evaluate_mode()
            th_list = [0.9]
            index = [3]
            lane_agent.save_model(int(step/100), loss_p)

            for idx in index:
                print("generate result")
                test.evaluation(loader, lane_agent, index = idx, name="test_result_"+str(epoch)+"_"+str(idx)+".json")
                name = "epoch_idx_"+str(epoch) + str(idx) + str(step/100)
                os.system("sh /home/kym/research/autonomous_car_vision/lane_detection/code/ITS/CuLane/evaluation_code/SCNN_Pytorch/utils/lane_evaluation/CULane/Run.sh " + name)

        if int(step)>700000:
            break