icam_extrinsics1,        \
istate_e1,               \
istate_e0 =              \
    mrcal.triangulation._triangulation_uncertainty_internal(slices,
                                                            optimization_inputs_baseline,
                                                            0,0,
                                                            stabilize_coords = args.stabilize_coords)

########## Gradient check
dp_triangulated_di0_empirical = grad(lambda i0: triangulate_nograd(
    i0,
    models_baseline[icam1].intrinsics()[1],
    models_baseline[icam0].extrinsics_rt_fromref(),
    models_baseline[icam0].extrinsics_rt_fromref(),
    models_baseline[icam1].extrinsics_rt_fromref(),
    baseline_rt_ref_frame,
    baseline_rt_ref_frame,
    q_true,
    lensmodel,
    stabilize_coords=args.stabilize_coords),
                                     models_baseline[icam0].intrinsics()[1],
                                     step=1e-5)
dp_triangulated_di1_empirical = grad(
    lambda i1: triangulate_nograd(
        models_baseline[icam0].intrinsics()[1],
        i1,
        models_baseline[icam0].extrinsics_rt_fromref(),
        models_baseline[icam0].extrinsics_rt_fromref(),
        models_baseline[icam1].extrinsics_rt_fromref(),
        baseline_rt_ref_frame,
        baseline_rt_ref_frame,
Beispiel #2
0
              nps.glue(np.eye(3), np.zeros((3, ), ), axis=-2),
              msg='identity_Rt')
confirm_equal(mrcal.identity_r(out=out3), np.zeros((3, )), msg='identity_r')
confirm_equal(mrcal.identity_rt(out=out6), np.zeros((6, )), msg='identity_rt')

################# rotate_point_R
y = \
    mrcal.rotate_point_R(R0_ref, x, out = out3)
confirm_equal(y,
              nps.matmult(x, nps.transpose(R0_ref)),
              msg='rotate_point_R result')

y, J_R, J_x = \
    mrcal.rotate_point_R(R0_ref, x, get_gradients=True,
                         out = (out3,out333,out33))
J_R_ref = grad(lambda R: nps.matmult(x, nps.transpose(R)), R0_ref)
J_x_ref = R0_ref
confirm_equal(y,
              nps.matmult(x, nps.transpose(R0_ref)),
              msg='rotate_point_R result')
confirm_equal(J_R, J_R_ref, msg='rotate_point_R J_R')
confirm_equal(J_x, J_x_ref, msg='rotate_point_R J_x')

# In-place
R0_ref_copy = np.array(R0_ref)
x_copy = np.array(x)
y = \
    mrcal.rotate_point_R(R0_ref_copy, x_copy, out = x_copy)
confirm_equal(y,
              nps.matmult(x, nps.transpose(R0_ref)),
              msg='rotate_point_R result written in-place into x')
Beispiel #3
0
 def grad_normalized_broadcasted(q_ref, i_ref):
     return grad(lambda qi: \
                 mrcal.unproject(qi[:2], intrinsics[0], qi[2:], normalize=True),
                 nps.glue(q_ref,i_ref, axis=-1))
Beispiel #4
0
 def grad_broadcasted(p_ref, i_ref):
     return grad(lambda pi: mrcal.project(pi[:3], intrinsics[0], pi[3:]),
                 nps.glue(p_ref,i_ref, axis=-1))
Beispiel #5
0
 def grad_broadcasted(q_ref, i_ref):
     return grad(lambda qi: \
                 mrcal.unproject_stereographic( \
                 mrcal.project_stereographic(
                     mrcal.unproject(qi[:2], intrinsics[0], qi[2:]))),
                 nps.glue(q_ref,i_ref, axis=-1))
Beispiel #6
0
 def grad_broadcasted(q_ref, i_ref):
     return grad(lambda qi: mrcal.unproject(qi[:2], intrinsics[0], qi[2:]),
                 nps.glue(q_ref,i_ref, axis=-1))
Beispiel #7
0
def test_geometry(Rt01,
                  p,
                  whatgeometry,
                  out_of_bounds=False,
                  check_gradients=False):

    R01 = Rt01[:3, :]
    t01 = Rt01[3, :]

    # p now has shape (Np,3). The leading dims have been flattened
    p = p.reshape(p.size // 3, 3)
    Np = len(p)

    # p has shape (Np,3)
    # v has shape (Np,2)
    v0local_noisy, v1local_noisy,v0_noisy,v1_noisy,q0_ref,q1_ref,q0_noisy,q1_noisy = \
        [v[...,0,:] for v in \
         mrcal.synthetic_data.
         _noisy_observation_vectors_for_triangulation(p, Rt01,
                                                      model0.intrinsics(),
                                                      model1.intrinsics(),
                                                      1,
                                                      sigma = 0.1)]

    scenarios = \
        ( (mrcal.triangulate_geometric,      callback_l2_geometric,    v0_noisy,      v1_noisy,      t01),
          (mrcal.triangulate_leecivera_l1,   callback_l1_angle,        v0_noisy,      v1_noisy,      t01),
          (mrcal.triangulate_leecivera_linf, callback_linf_angle,      v0_noisy,      v1_noisy,      t01),
          (mrcal.triangulate_leecivera_mid2, None,                     v0_noisy,      v1_noisy,      t01),
          (mrcal.triangulate_leecivera_wmid2,None,                     v0_noisy,      v1_noisy,      t01),
          (mrcal.triangulate_lindstrom,      callback_l2_reprojection, v0local_noisy, v1local_noisy, Rt01),
         )

    for scenario in scenarios:

        f, callback = scenario[:2]
        args = scenario[2:]

        result = f(*args, get_gradients=True)
        p_reported = result[0]

        what = f"{whatgeometry} {f.__name__}"

        if out_of_bounds:
            p_optimized = np.zeros(p_reported.shape)
        else:
            # Check all the gradients
            if check_gradients:
                grads = result[1:]
                for ip in range(Np):
                    args_cut = (args[0][ip], args[1][ip], args[2])
                    for ivar in range(len(args)):
                        grad_empirical  = \
                            grad( lambda x: f( *args_cut[:ivar],
                                               x,
                                               *args_cut[ivar+1:]),
                                  args_cut[ivar],
                                  step = 1e-6)
                        testutils.confirm_equal(
                            grads[ivar][ip],
                            grad_empirical,
                            relative=True,
                            worstcase=True,
                            msg=f"{what}: grad(ip={ip}, ivar = {ivar})",
                            eps=2e-2)

            if callback is not None:

                # I run an optimization to directly optimize the quantity each triangulation
                # routine is supposed to be optimizing, and then I compare
                p_optimized = \
                    nps.cat(*[ scipy.optimize.minimize(callback,
                                                       p_reported[ip], # seed from the "right" value
                                                       args   = (args[0][ip], args[1][ip], args[2]),
                                                       method = 'Nelder-Mead',
                                                       # options = dict(disp  = True)
                                                       )['x'] \
                               for ip in range(Np) ])

                # print( f"{what} p reported,optimized:\n{nps.cat(p_reported, p_optimized)}" )
                # print( f"{what} p_err: {p_reported - p_optimized}" )
                # print( f"{what} optimum reported/optimized:\n{callback(p_reported, *args)/callback(p_optimized, *args)}" )

                testutils.confirm_equal(p_reported,
                                        p_optimized,
                                        relative=True,
                                        worstcase=True,
                                        msg=what,
                                        eps=1e-3)
            else:
                # No callback defined. Compare projected q
                q0 = mrcal.project(p_reported, *model0.intrinsics())
                q1 = mrcal.project(
                    mrcal.transform_point_Rt(mrcal.invert_Rt(Rt01),
                                             p_reported), *model1.intrinsics())

                testutils.confirm_equal(q0,
                                        q0_ref,
                                        relative=False,
                                        worstcase=True,
                                        msg=f'{what} q0',
                                        eps=25.)
                testutils.confirm_equal(q1,
                                        q1_ref,
                                        relative=False,
                                        worstcase=True,
                                        msg=f'{what} q1',
                                        eps=25.)
                        q_projected,
                        msg=f"project(unproject()) is an identity",
                        worstcase=True,
                        relative=True)

testutils.confirm_equal(
    func_project(func_unproject(q_projected, fx, fy, cx, cy), fx, fy, cx, cy),
    q_projected,
    msg=f"project_{name}(unproject_{name}()) is an identity",
    worstcase=True,
    relative=True)

# Now gradients for project()
ipt = 1
_, dq_dp_reported = func_project(p[ipt], fx, fy, cx, cy, get_gradients=True)
dq_dp_observed = grad(lambda p: func_project(p, fx, fy, cx, cy), p[ipt])
testutils.confirm_equal(dq_dp_reported,
                        dq_dp_observed,
                        msg=f"project_{name}() dq/dp",
                        worstcase=True,
                        relative=True)
_, dq_dp_reported, dq_di_reported = mrcal.project(p[ipt],
                                                  *intrinsics,
                                                  get_gradients=True)
dq_dp_observed = grad(lambda p: mrcal.project(p, *intrinsics), p[ipt])
dq_di_observed = grad(
    lambda intrinsics_data: mrcal.project(p[ipt], intrinsics[0],
                                          intrinsics_data), intrinsics[1])
testutils.confirm_equal(dq_dp_reported,
                        dq_dp_observed,
                        msg=f"project({name}) dq/dp",
Beispiel #9
0
# dp_triangulated_dt1r =
#   dp_triangulated_dt01 dt01_dt1r
nps.matmult( dp_triangulated_dt01,
             dt01_dt1r,
             out = dp_triangulated_dpstate[..., istate_e1+3:istate_e1+6])

# dp_triangulated_drtrf has shape (Npoints,Nframes,3,6). I reshape to (Npoints,3,Nframes*6)
dp_triangulated_dpstate[..., istate_f0:istate_f0+Nstate_frames] = \
    nps.clump(nps.xchg(dp_triangulated_drtrf,-2,-3), n=-2)

########## Gradient check
dp_triangulated_di0_empirical = grad(lambda i0: triangulate_nograd([i0, models_baseline[1].intrinsics()[1]],
                                                                   [m.extrinsics_rt_fromref() for m in models_baseline],
                                                                   optimization_inputs_baseline['frames_rt_toref'], frames_true,
                                                                   q_true,
                                                                   lensmodel,
                                                                   stabilize_coords=args.stabilize_coords),
                                     models_baseline[0].intrinsics()[1])
dp_triangulated_di1_empirical = grad(lambda i1: triangulate_nograd([models_baseline[0].intrinsics()[1],i1],
                                                                   [m.extrinsics_rt_fromref() for m in models_baseline],
                                                                   optimization_inputs_baseline['frames_rt_toref'], frames_true,
                                                                   q_true,
                                                                   lensmodel,
                                                                   stabilize_coords=args.stabilize_coords),
                                     models_baseline[1].intrinsics()[1])
dp_triangulated_de1_empirical = grad(lambda e1: triangulate_nograd([m.intrinsics()[1]         for m in models_baseline],
                                                                   [models_baseline[0].extrinsics_rt_fromref(),e1],
                                                                   optimization_inputs_baseline['frames_rt_toref'], frames_true,
                                                                   q_true,
                                                                   lensmodel,