def request_cb_announcements(self, peer, node, version):
        tip = node.getbestblockhash()
        peer.get_headers(locator=[int(tip, 16)], hashstop=0)

        msg = msg_sendcmpct()
        msg.version = version
        msg.announce = True
        peer.send_and_ping(msg)
Beispiel #2
0
    def request_cb_announcements(self, peer, node, version):
        tip = node.getbestblockhash()
        peer.get_headers(locator=[int(tip, 16)], hashstop=0)

        msg = msg_sendcmpct()
        msg.version = version
        msg.announce = True
        peer.send_and_ping(msg)
 def request_cb_announcements(self, peer):
     node = self.nodes[0]
     tip = node.getbestblockhash()
     peer.get_headers(locator=[int(tip, 16)], hashstop=0)
     peer.send_and_ping(msg_sendcmpct(announce=True, version=peer.cmpct_version))
    def test_sendcmpct(self, test_node, old_node=None):
        preferred_version = test_node.cmpct_version
        node = self.nodes[0]

        # Make sure we get a SENDCMPCT message from our peer
        def received_sendcmpct():
            return (len(test_node.last_sendcmpct) > 0)
        test_node.wait_until(received_sendcmpct, timeout=30)
        with p2p_lock:
            # Check that the first version received is the preferred one
            assert_equal(test_node.last_sendcmpct[0].version, preferred_version)
            # And that we receive versions down to 1.
            assert_equal(test_node.last_sendcmpct[-1].version, 1)
            test_node.last_sendcmpct = []

        tip = int(node.getbestblockhash(), 16)

        def check_announcement_of_new_block(node, peer, predicate):
            peer.clear_block_announcement()
            block_hash = int(node.generate(1)[0], 16)
            peer.wait_for_block_announcement(block_hash, timeout=30)
            assert peer.block_announced

            with p2p_lock:
                assert predicate(peer), (
                    "block_hash={!r}, cmpctblock={!r}, inv={!r}".format(
                        block_hash, peer.last_message.get("cmpctblock", None), peer.last_message.get("inv", None)))

        # We shouldn't get any block announcements via cmpctblock yet.
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Try one more time, this time after requesting headers.
        test_node.request_headers_and_sync(locator=[tip])
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "inv" in p.last_message)

        # Test a few ways of using sendcmpct that should NOT
        # result in compact block announcements.
        # Before each test, sync the headers chain.
        test_node.request_headers_and_sync(locator=[tip])

        # Now try a SENDCMPCT message with too-high version
        test_node.send_and_ping(msg_sendcmpct(announce=True, version=preferred_version+1))
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Headers sync before next test.
        test_node.request_headers_and_sync(locator=[tip])

        # Now try a SENDCMPCT message with valid version, but announce=False
        test_node.send_and_ping(msg_sendcmpct(announce=False, version=preferred_version))
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Headers sync before next test.
        test_node.request_headers_and_sync(locator=[tip])

        # Finally, try a SENDCMPCT message with announce=True
        test_node.send_and_ping(msg_sendcmpct(announce=True, version=preferred_version))
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time (no headers sync should be needed!)
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time, after turning on sendheaders
        test_node.send_and_ping(msg_sendheaders())
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time, after sending a version-1, announce=false message.
        test_node.send_and_ping(msg_sendcmpct(announce=False, version=preferred_version-1))
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Now turn off announcements
        test_node.send_and_ping(msg_sendcmpct(announce=False, version=preferred_version))
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "headers" in p.last_message)

        if old_node is not None:
            # Verify that a peer using an older protocol version can receive
            # announcements from this node.
            old_node.send_and_ping(msg_sendcmpct(announce=True, version=preferred_version-1))
            # Header sync
            old_node.request_headers_and_sync(locator=[tip])
            check_announcement_of_new_block(node, old_node, lambda p: "cmpctblock" in p.last_message)
Beispiel #5
0
    def test_sendcmpct(self, node, test_node, preferred_version, old_node=None):
        # Make sure we get a SENDCMPCT message from our peer
        def received_sendcmpct():
            return (len(test_node.last_sendcmpct) > 0)
        wait_until(received_sendcmpct, timeout=30, lock=mininode_lock)
        with mininode_lock:
            # Check that the first version received is the preferred one
            assert_equal(test_node.last_sendcmpct[0].version, preferred_version)
            # And that we receive versions down to 1.
            assert_equal(test_node.last_sendcmpct[-1].version, 1)
            test_node.last_sendcmpct = []

        tip = int(node.getbestblockhash(), 16)

        def check_announcement_of_new_block(node, peer, predicate):
            peer.clear_block_announcement()
            block_hash = int(node.generate(1)[0], 16)
            peer.wait_for_block_announcement(block_hash, timeout=30)
            assert(peer.block_announced)

            with mininode_lock:
                assert predicate(peer), (
                    "block_hash={!r}, cmpctblock={!r}, inv={!r}".format(
                        block_hash, peer.last_message.get("cmpctblock", None), peer.last_message.get("inv", None)))

        # We shouldn't get any block announcements via cmpctblock yet.
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Try one more time, this time after requesting headers.
        test_node.request_headers_and_sync(locator=[tip])
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "inv" in p.last_message)

        # Test a few ways of using sendcmpct that should NOT
        # result in compact block announcements.
        # Before each test, sync the headers chain.
        test_node.request_headers_and_sync(locator=[tip])

        # Now try a SENDCMPCT message with too-high version
        sendcmpct = msg_sendcmpct()
        sendcmpct.version = preferred_version+1
        sendcmpct.announce = True
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Headers sync before next test.
        test_node.request_headers_and_sync(locator=[tip])

        # Now try a SENDCMPCT message with valid version, but announce=False
        sendcmpct.version = preferred_version
        sendcmpct.announce = False
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Headers sync before next test.
        test_node.request_headers_and_sync(locator=[tip])

        # Finally, try a SENDCMPCT message with announce=True
        sendcmpct.version = preferred_version
        sendcmpct.announce = True
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time (no headers sync should be needed!)
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time, after turning on sendheaders
        test_node.send_and_ping(msg_sendheaders())
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time, after sending a version-1, announce=false message.
        sendcmpct.version = preferred_version-1
        sendcmpct.announce = False
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Now turn off announcements
        sendcmpct.version = preferred_version
        sendcmpct.announce = False
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(node, test_node, lambda p: "cmpctblock" not in p.last_message and "headers" in p.last_message)

        if old_node is not None:
            # Verify that a peer using an older protocol version can receive
            # announcements from this node.
            sendcmpct.version = preferred_version-1
            sendcmpct.announce = True
            old_node.send_and_ping(sendcmpct)
            # Header sync
            old_node.request_headers_and_sync(locator=[tip])
            check_announcement_of_new_block(node, old_node, lambda p: "cmpctblock" in p.last_message)
    def run_test(self):
        node = self.nodes[0]
        default_p2p = node.add_p2p_connection(P2PDataStore())
        test_p2p = node.add_p2p_connection(TestP2PConn())

        self.genesis_hash = int(node.getbestblockhash(), 16)
        self.block_heights[self.genesis_hash] = 0
        spendable_outputs = []

        # save the current tip so it can be spent by a later block
        def save_spendable_output():
            spendable_outputs.append(self.tip)

        # get an output that we previously marked as spendable
        def get_spendable_output():
            return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0)

        # move the tip back to a previous block
        def tip(number):
            self.tip = self.blocks[number]

        # shorthand for functions
        block = self.next_block

        # Create a new block
        block(0)
        save_spendable_output()
        default_p2p.send_blocks_and_test([self.tip], node)

        # Now we need that block to mature so we can spend the coinbase.
        maturity_blocks = []
        for i in range(99):
            block(5000 + i)
            maturity_blocks.append(self.tip)
            save_spendable_output()

        # Get to one block of the May 15, 2018 HF activation
        for i in range(6):
            block(5100 + i)
            maturity_blocks.append(self.tip)

        # Send it all to the node at once.
        default_p2p.send_blocks_and_test(maturity_blocks, node)

        # collect spendable outputs now to avoid cluttering the code later on
        out = []
        for i in range(100):
            out.append(get_spendable_output())

        # Check that compact block also work for big blocks
        # Wait for SENDCMPCT
        def received_sendcmpct():
            return (test_p2p.last_sendcmpct is not None)
        wait_until(received_sendcmpct, timeout=30)

        sendcmpct = msg_sendcmpct()
        sendcmpct.version = 1
        sendcmpct.announce = True
        test_p2p.send_and_ping(sendcmpct)

        # Exchange headers
        def received_getheaders():
            return (test_p2p.last_getheaders is not None)
        wait_until(received_getheaders, timeout=30)

        # Return the favor
        test_p2p.send_message(test_p2p.last_getheaders)

        # Wait for the header list
        def received_headers():
            return (test_p2p.last_headers is not None)
        wait_until(received_headers, timeout=30)

        # It's like we know about the same headers !
        test_p2p.send_message(test_p2p.last_headers)

        # Send a block
        b1 = block(1, spend=out[0], block_size=ONE_MEGABYTE + 1)
        default_p2p.send_blocks_and_test([self.tip], node)

        # Checks the node to forward it via compact block
        def received_block():
            return (test_p2p.last_cmpctblock is not None)
        wait_until(received_block, timeout=30)

        # Was it our block ?
        cmpctblk_header = test_p2p.last_cmpctblock.header_and_shortids.header
        cmpctblk_header.calc_sha256()
        assert cmpctblk_header.sha256 == b1.sha256

        # Send a large block with numerous transactions.
        test_p2p.clear_block_data()
        b2 = block(2, spend=out[1], extra_txns=70000,
                   block_size=self.excessive_block_size - 1000)
        default_p2p.send_blocks_and_test([self.tip], node)

        # Checks the node forwards it via compact block
        wait_until(received_block, timeout=30)

        # Was it our block ?
        cmpctblk_header = test_p2p.last_cmpctblock.header_and_shortids.header
        cmpctblk_header.calc_sha256()
        assert cmpctblk_header.sha256 == b2.sha256

        # In order to avoid having to resend a ton of transactions, we invalidate
        # b2, which will send all its transactions in the mempool. Note that this
        # assumes reorgs will insert low-fee transactions back into the
        # mempool.
        node.invalidateblock(node.getbestblockhash())

        # Let's send a compact block and see if the node accepts it.
        # Let's modify b2 and use it so that we can reuse the mempool.
        tx = b2.vtx[0]
        tx.vout.append(CTxOut(0, CScript([random.randint(0, 256), OP_RETURN])))
        tx.rehash()
        b2.vtx[0] = tx
        b2.hashMerkleRoot = b2.calc_merkle_root()
        b2.solve()

        # Now we create the compact block and send it
        comp_block = HeaderAndShortIDs()
        comp_block.initialize_from_block(b2)
        test_p2p.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))

        # Check that compact block is received properly
        assert int(node.getbestblockhash(), 16) == b2.sha256
    def run_test(self):
        # Nodes will only request hb compact blocks mode when they're out of IBD
        for node in self.nodes:
            assert not node.getblockchaininfo()['initialblockdownload']

        p2p_conn_blocksonly = self.nodes[0].add_p2p_connection(P2PInterface())
        p2p_conn_high_bw = self.nodes[1].add_p2p_connection(P2PInterface())
        p2p_conn_low_bw = self.nodes[3].add_p2p_connection(P2PInterface())
        for conn in [p2p_conn_blocksonly, p2p_conn_high_bw, p2p_conn_low_bw]:
            assert_equal(conn.message_count['sendcmpct'], 2)
            conn.send_and_ping(msg_sendcmpct(announce=False, version=2))

        # Nodes:
        #   0 -> blocksonly
        #   1 -> high bandwidth
        #   2 -> miner
        #   3 -> low bandwidth
        #
        # Topology:
        #   p2p_conn_blocksonly ---> node0
        #   p2p_conn_high_bw    ---> node1
        #   p2p_conn_low_bw     ---> node3
        #   node2 (no connections)
        #
        # node2 produces blocks that are passed to the rest of the nodes
        # through the respective p2p connections.

        self.log.info("Test that -blocksonly nodes do not select peers for BIP152 high bandwidth mode")

        block0 = self.build_block_on_tip()

        # A -blocksonly node should not request BIP152 high bandwidth mode upon
        # receiving a new valid block at the tip.
        p2p_conn_blocksonly.send_and_ping(msg_block(block0))
        assert_equal(int(self.nodes[0].getbestblockhash(), 16), block0.sha256)
        assert_equal(p2p_conn_blocksonly.message_count['sendcmpct'], 2)
        assert_equal(p2p_conn_blocksonly.last_message['sendcmpct'].announce, False)

        # A normal node participating in transaction relay should request BIP152
        # high bandwidth mode upon receiving a new valid block at the tip.
        p2p_conn_high_bw.send_and_ping(msg_block(block0))
        assert_equal(int(self.nodes[1].getbestblockhash(), 16), block0.sha256)
        p2p_conn_high_bw.wait_until(lambda: p2p_conn_high_bw.message_count['sendcmpct'] == 3)
        assert_equal(p2p_conn_high_bw.last_message['sendcmpct'].announce, True)

        # Don't send a block from the p2p_conn_low_bw so the low bandwidth node
        # doesn't select it for BIP152 high bandwidth relay.
        self.nodes[3].submitblock(block0.serialize().hex())

        self.log.info("Test that -blocksonly nodes send getdata(BLOCK) instead"
                      " of getdata(CMPCT) in BIP152 low bandwidth mode")

        block1 = self.build_block_on_tip()

        p2p_conn_blocksonly.send_message(msg_headers(headers=[CBlockHeader(block1)]))
        p2p_conn_blocksonly.sync_send_with_ping()
        assert_equal(p2p_conn_blocksonly.last_message['getdata'].inv, [CInv(MSG_BLOCK | MSG_WITNESS_FLAG, block1.sha256)])

        p2p_conn_high_bw.send_message(msg_headers(headers=[CBlockHeader(block1)]))
        p2p_conn_high_bw.sync_send_with_ping()
        assert_equal(p2p_conn_high_bw.last_message['getdata'].inv, [CInv(MSG_CMPCT_BLOCK, block1.sha256)])

        self.log.info("Test that getdata(CMPCT) is still sent on BIP152 low bandwidth connections"
                      " when no -blocksonly nodes are involved")

        p2p_conn_low_bw.send_and_ping(msg_headers(headers=[CBlockHeader(block1)]))
        p2p_conn_low_bw.sync_with_ping()
        assert_equal(p2p_conn_low_bw.last_message['getdata'].inv, [CInv(MSG_CMPCT_BLOCK, block1.sha256)])

        self.log.info("Test that -blocksonly nodes still serve compact blocks")

        def test_for_cmpctblock(block):
            if 'cmpctblock' not in p2p_conn_blocksonly.last_message:
                return False
            return p2p_conn_blocksonly.last_message['cmpctblock'].header_and_shortids.header.rehash() == block.sha256

        p2p_conn_blocksonly.send_message(msg_getdata([CInv(MSG_CMPCT_BLOCK, block0.sha256)]))
        p2p_conn_blocksonly.wait_until(lambda: test_for_cmpctblock(block0))

        # Request BIP152 high bandwidth mode from the -blocksonly node.
        p2p_conn_blocksonly.send_and_ping(msg_sendcmpct(announce=True, version=2))

        block2 = self.build_block_on_tip()
        self.nodes[0].submitblock(block1.serialize().hex())
        self.nodes[0].submitblock(block2.serialize().hex())
        p2p_conn_blocksonly.wait_until(lambda: test_for_cmpctblock(block2))
Beispiel #8
0
    def test_sendcmpct(self, node, test_node, preferred_version):
        # Make sure we get a SENDCMPCT message from our peer
        def received_sendcmpct():
            return (len(test_node.last_sendcmpct) > 0)

        wait_until(received_sendcmpct, timeout=30, lock=mininode_lock)
        with mininode_lock:
            # Check that the first version received is the preferred one
            assert_equal(test_node.last_sendcmpct[0].version,
                         preferred_version)
            # And that version 1 is not announced
            assert all(msg.version != 1 for msg in test_node.last_sendcmpct)
            test_node.last_sendcmpct = []

        tip = int(node.getbestblockhash(), 16)

        def check_announcement_of_new_block(node, peer, predicate):
            peer.clear_block_announcement()
            block_hash = int(node.generate(1)[0], 16)
            peer.wait_for_block_announcement(block_hash, timeout=30)
            assert peer.block_announced

            with mininode_lock:
                assert predicate(peer), (
                    "block_hash={!r}, cmpctblock={!r}, inv={!r}".format(
                        block_hash, peer.last_message.get("cmpctblock", None),
                        peer.last_message.get("inv", None)))

        # We shouldn't get any block announcements via cmpctblock yet.
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Try one more time, this time after requesting headers.
        test_node.request_headers_and_sync(locator=[tip])
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" not in p.last_message and
            "inv" in p.last_message)

        # Test a few ways of using sendcmpct that should NOT
        # result in compact block announcements.
        # Before each test, sync the headers chain.
        test_node.request_headers_and_sync(locator=[tip])

        # Now try a SENDCMPCT message with too-high version
        sendcmpct = msg_sendcmpct()
        sendcmpct.version = preferred_version + 1
        sendcmpct.announce = True
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Try a SENDCMPCT with unsupported (non-segwit) version
        sendcmpct.version = 1
        sendcmpct.announce = True
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Headers sync before next test.
        test_node.request_headers_and_sync(locator=[tip])

        # Now try a SENDCMPCT message with valid version, but announce=False
        sendcmpct.version = preferred_version
        sendcmpct.announce = False
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" not in p.last_message)

        # Headers sync before next test.
        test_node.request_headers_and_sync(locator=[tip])

        # Finally, try a SENDCMPCT message with announce=True
        sendcmpct.version = preferred_version
        sendcmpct.announce = True
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time (no headers sync should be needed!)
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time, after turning on sendheaders
        test_node.send_and_ping(msg_sendheaders())
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Try one more time, after sending a version-1, announce=false message.
        sendcmpct.version = preferred_version - 1
        sendcmpct.announce = False
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" in p.last_message)

        # Now turn off announcements
        sendcmpct.version = preferred_version
        sendcmpct.announce = False
        test_node.send_and_ping(sendcmpct)
        check_announcement_of_new_block(
            node, test_node, lambda p: "cmpctblock" not in p.last_message and
            "headers" in p.last_message)
Beispiel #9
0
    def get_tests(self):
        self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16)
        self.block_heights[self.genesis_hash] = 0
        spendable_outputs = []

        # save the current tip so it can be spent by a later block
        def save_spendable_output():
            spendable_outputs.append(self.tip)

        # get an output that we previously marked as spendable
        def get_spendable_output():
            return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0)

        # returns a test case that asserts that the current tip was accepted
        def accepted():
            return TestInstance([[self.tip, True]])

        # returns a test case that asserts that the current tip was rejected
        def rejected(reject=None):
            if reject is None:
                return TestInstance([[self.tip, False]])
            else:
                return TestInstance([[self.tip, reject]])

        # move the tip back to a previous block
        def tip(number):
            self.tip = self.blocks[number]

        # shorthand for functions
        block = self.next_block

        # Create a new block
        block(0)
        save_spendable_output()
        yield accepted()

        # Now we need that block to mature so we can spend the coinbase.
        test = TestInstance(sync_every_block=False)
        for i in range(99):
            block(5000 + i)
            test.blocks_and_transactions.append([self.tip, True])
            save_spendable_output()

        # Get to one block of the May 15, 2018 HF activation
        for i in range(6):
            block(5100 + i)
            test.blocks_and_transactions.append([self.tip, True])

        # Send it all to the node at once.
        yield test

        # collect spendable outputs now to avoid cluttering the code later on
        out = []
        for i in range(100):
            out.append(get_spendable_output())

        # There can be only one network thread running at a time.
        # Adding a new P2P connection here will try to start the network thread
        # at init, which will throw an assertion because it's already running.
        # This requires a few steps to avoid this:
        #   1/ Disconnect all the TestManager nodes
        #   2/ Terminate the network thread
        #   3/ Add the new P2P connection
        #   4/ Reconnect all the TestManager nodes
        #   5/ Restart the network thread

        # Disconnect all the TestManager nodes
        [n.disconnect_node() for n in self.test.p2p_connections]
        self.test.wait_for_disconnections()
        self.test.clear_all_connections()

        # Wait for the network thread to terminate
        network_thread_join()

        # Add the new connection
        node = self.nodes[0]
        node.add_p2p_connection(TestNode())

        # Reconnect TestManager nodes
        self.test.add_all_connections(self.nodes)

        # Restart the network thread
        network_thread_start()

        # Wait for connection to be etablished
        peer = node.p2p
        peer.wait_for_verack()

        # Check that compact block also work for big blocks
        # Wait for SENDCMPCT
        def received_sendcmpct():
            return (peer.last_sendcmpct != None)

        wait_until(received_sendcmpct, timeout=30)

        sendcmpct = msg_sendcmpct()
        sendcmpct.version = 1
        sendcmpct.announce = True
        peer.send_and_ping(sendcmpct)

        # Exchange headers
        def received_getheaders():
            return (peer.last_getheaders != None)

        wait_until(received_getheaders, timeout=30)

        # Return the favor
        peer.send_message(peer.last_getheaders)

        # Wait for the header list
        def received_headers():
            return (peer.last_headers != None)

        wait_until(received_headers, timeout=30)

        # It's like we know about the same headers !
        peer.send_message(peer.last_headers)

        # Send a block
        b1 = block(1, spend=out[0], block_size=ONE_MEGABYTE + 1)
        yield accepted()

        # Checks the node to forward it via compact block
        def received_block():
            return (peer.last_cmpctblock != None)

        wait_until(received_block, timeout=30)

        # Was it our block ?
        cmpctblk_header = peer.last_cmpctblock.header_and_shortids.header
        cmpctblk_header.calc_sha256()
        assert (cmpctblk_header.sha256 == b1.sha256)

        # Send a large block with numerous transactions.
        peer.clear_block_data()
        b2 = block(2,
                   spend=out[1],
                   extra_txns=70000,
                   block_size=self.excessive_block_size - 1000)
        yield accepted()

        # Checks the node forwards it via compact block
        wait_until(received_block, timeout=30)

        # Was it our block ?
        cmpctblk_header = peer.last_cmpctblock.header_and_shortids.header
        cmpctblk_header.calc_sha256()
        assert (cmpctblk_header.sha256 == b2.sha256)

        # In order to avoid having to resend a ton of transactions, we invalidate
        # b2, which will send all its transactions in the mempool.
        node.invalidateblock(node.getbestblockhash())

        # Let's send a compact block and see if the node accepts it.
        # Let's modify b2 and use it so that we can reuse the mempool.
        tx = b2.vtx[0]
        tx.vout.append(CTxOut(0, CScript([random.randint(0, 256), OP_RETURN])))
        tx.rehash()
        b2.vtx[0] = tx
        b2.hashMerkleRoot = b2.calc_merkle_root()
        b2.solve()

        # Now we create the compact block and send it
        comp_block = HeaderAndShortIDs()
        comp_block.initialize_from_block(b2)
        peer.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))

        # Check that compact block is received properly
        assert (int(node.getbestblockhash(), 16) == b2.sha256)