Beispiel #1
0
            "params": {
                "bitonic_array": [-3, 9, 18, 20, 17, 5, 1],
                "value": 20
            },
            "expected": True
        },
        "test_1": {
            "params": {
                "bitonic_array": [5, 6, 7, 8, 9, 10, 3, 2, 1],
                "value": 30
            },
            "expected": False
        },
        "test_2": {
            "params": {
                "bitonic_array": [1, 2, 3, 1],
                "value": 2
            },
            "expected": True
        },
        "test_3": {
            "params": {
                "bitonic_array": [23, 24, 69, 100, 99, 79, 78, 67, 36, 26, 19],
                "value": 67
            },
            "expected": True
        }
    }
    dynamically_generate_tests(functionality_test_data, optimal, timed=True)
    run_dynamic_tests()
def source_and_target_not_at_edges(n, m, source, target) -> bool:
    source_row, source_col = source
    target_row, target_column = target
    return (source_row, source_col) != (0, 0) and \
           (target_row, target_column) != (n - 1, m - 1)


def get_sub_grid_from_source_to_target(n, m, source, target) -> tuple:
    source_row: int = source[0]
    target_column: int = target[1]
    n_from_source_to_target: int = n - source_row
    m_from_source_to_target: int = m - target_column
    return n_from_source_to_target, m_from_source_to_target


def get_neighbors(n, m, row, col) -> list:
    right: tuple = (row, col + 1)
    down: tuple = (row + 1, col)
    potential_neighbors: list = [right, down]
    actual_neighbors: list = []
    for n_row, n_col in potential_neighbors:
        if not n_row > (n - 1) and \
                not n_col > (m - 1):
            actual_neighbors.append((n_row, n_col))
    return actual_neighbors


if __name__ == '__main__':
    dynamically_generate_tests(time_complexity_test_data, optimal, timed=True)
    run_dynamic_tests()
            return
        if self.tree_sizes[root_of_p] < self.tree_sizes[root_of_q]:  # O(1)
            self.roots[root_of_p] = root_of_q
            self.tree_sizes[root_of_q] += self.tree_sizes[root_of_p]
        else:   # O(1)
            self.roots[root_of_q] = root_of_p
            self.tree_sizes[root_of_p] += self.tree_sizes[root_of_p]

    def __get_root(self, node: int):  # O(log(n))
        while node != self.roots[node]:
            self.__compress_path(node)
            node = self.roots[node]
        return node

    def __compress_path(self, node: int):  # Set node to point to it's grandparent
        self.roots[node] = self.roots[self.roots[node]]

    def __log_union_state(self, p: int, q: int):
        print(f"union({p}, {q})")
        print([index for index in range(len(self.roots))])
        print(self.roots)

    def __log_connected_state(self, p: int, q: int):
        print(f"connected({p}, {q})")
        print(self.roots[p] == self.roots[q])


if __name__ == '__main__':
    dynamically_generate_tests(union_find_functionality_test_data, union_find_client, timed=True)
    run_dynamic_tests()
            for k in numbers:
                if i + j + k == value:
                    return i, j, k
    return -1, -1, -1


def optimal(numbers: list, value: int) -> tuple:  # O(n^2) -> ~ n^2
    hashed_numbers: dict = {}
    for number in numbers:
        hashed_numbers[number] = number
    for i in numbers:
        for j in numbers:
            difference: int = value - (i + j)
            if difference in hashed_numbers:
                return i, j, hashed_numbers[difference]
    return -1, -1, -1


if __name__ == '__main__':
    functionality_test_data: dict = {
        "test_0": {
            "params": {
                "numbers": [1, 2, 3, 4, 5, 6, 7, 8],
                "value": 11
            },
            "expected": (1, 2, 8)
        }
    }
    dynamically_generate_tests(functionality_test_data, optimal)
    run_dynamic_tests()
from test_utilities.dynamic_test_creator import \
    run_dynamic_tests, dynamically_generate_tests
from week_0.union_find.test_resources.social_network_connectivity_functionality_test_data import \
    social_network_connectivity_functionality_test_data


def earliest_network_was_connected_fully(connections: list,
                                         friends: int) -> int:  # O(m*log(n))
    """
    1. connect m[i].friend_1 with m[i].friend_2
    2. update max_tree_size variable which keeps track of the largest tree in the graph
    3. if max_tree_size() equals n, then return m[0].time, else continue looping through m.

    this algorithm takes m iterations at worst with log(n) work in each iteration, therefore O(m*log(n))
    """
    facebook_connector = FacebookFriendConnector(friends)
    for connection in connections:  # O(m)
        facebook_connector.union(connection.friend_1,
                                 connection.friend_2)  # O(log(n)
        if facebook_connector.all_connected():  # O(1)
            return connection.time_of_connection
    return -1


if __name__ == '__main__':
    dynamically_generate_tests(
        social_network_connectivity_functionality_test_data,
        earliest_network_was_connected_fully,
        timed=True)
    run_dynamic_tests()
    def grid_traversal(row: int, column: int) -> int:
        if row == 0 or column == 0:
            return 0
        elif row == 1 or column == 1:
            return 1
        else:
            right_path_traversals: int = grid_traversal(row, column - 1)
            down_path_traversals: int = grid_traversal(row - 1, column)
            return right_path_traversals + down_path_traversals

    if not source_and_target_at_edges(n, m, source, target):
        source_row: int = source[0]
        target_column: int = target[1]
        n_from_source_to_target: int = n - source_row
        m_from_source_to_target: int = m - target_column
        return grid_traversal(n_from_source_to_target, m_from_source_to_target)
    else:
        return grid_traversal(n, m)


def source_and_target_at_edges(n, m, source, target) -> bool:
    source_row, source_col = source
    target_row, target_column = target
    return (source_row, source_col) == (0, 0) and \
           (target_row, target_column) == (n - 1, m - 1)


if __name__ == '__main__':
    dynamically_generate_tests(functionality_test_data, brute_force)
    run_dynamic_tests()
Beispiel #7
0
        else:   # O(1)
            self.roots[root_of_q] = root_of_p
            self.tree_sizes[root_of_p] += self.tree_sizes[root_of_p]

            self.successor_roots[root_of_p] = self.successor_roots[root_of_q]  # Successor mod

    def __get_root(self, node: int):  # O(log(n))
        while node != self.roots[node]:
            self.__compress_path(node)
            node = self.roots[node]
        return node

    def __compress_path(self, node: int):  # Set node to point to it's grandparent
        self.roots[node] = self.roots[self.roots[node]]

    def __log_union_state(self, p: int, q: int):
        print(f"union({p}, {q})")
        print(f"Index: {[index for index in range(len(self.roots))]}")
        print(f"Roots: {self.roots}")
        print(f"Tree Sizes: {self.tree_sizes}")

    def __log_connected_state(self, p: int, q: int):
        print(f"connected({p}, {q})")
        print(self.roots[p] == self.roots[q])


if __name__ == '__main__':
    dynamically_generate_tests(
        union_find_with_successor_and_delete_functionality_test_data, successor_with_delete_client, timed=True)
    run_dynamic_tests()