def modelo2(train, test, coluna):

    X_train = train.drop('default payment next month', axis=1)
    Y_train = train['default payment next month']
    X_test = test.drop('default payment next month', axis=1)
    Y_test = test['default payment next month']

    tamanho = len(X_train.columns) + 1

    X_train = X_train.values
    Y_train = Y_train.values
    X_test = X_test.values
    Y_test = Y_test.values

    salvar = pandas.read_csv('resultados_stepwise.csv')
    i = len(salvar.index) + 1

    layer_1 = 46
    layer_2 = 12  #se zero, comentar a linha do layer_2
    rate = 0.01
    epoch = 200  #50
    batch = 128
    decay = 1e-12
    #decay = 0.0
    drop = 0.5  #se 0, comentar a linha do dropout

    model = load_model('my_model.h5')

    predictions = model.predict(X_test)

    predictions = pandas.DataFrame(predictions, columns=['SCORE'])
    s = pandas.DataFrame(Y_test, columns=['CLASSE'])
    x = predictions.join(s)

    ks_max = teste_ks.KS(x)

    salvar.loc[i] = [
        ks_max, layer_1, layer_2, rate, epoch, batch, decay, drop, coluna
    ]
    salvar.to_csv("resultados_stepwise.csv", index=False)

    return ks_max
Beispiel #2
0
def modelo(train, test, coluna):

    ###

    X_train = train.drop('default payment next month', axis=1)
    Y_train = train['default payment next month']
    X_test = test.drop('default payment next month', axis=1)
    Y_test = test['default payment next month']

    tamanho = len(X_train.columns) + 1

    X_train = X_train.values
    Y_train = Y_train.values
    X_test = X_test.values
    Y_test = Y_test.values

    ##

    sm = SMOTE(kind='regular')

    X_resampled, Y_resampled = sm.fit_sample(X_train, Y_train)

    layer_1 = 46
    layer_2 = 12  #se zero, comentar a linha do layer_2
    rate = 0.01
    epoch = 200  #50
    batch = 128
    decay = 1e-12
    #decay = 0.0
    drop = 0.5  #se 0, comentar a linha do dropout

    salvar = pandas.read_csv('resultados_stepwise.csv')
    i = len(salvar.index) + 1

    # Model Creation, 1 input layer, 1 hidden layer and 1 exit layter
    model = Sequential()
    model.add(Dense(layer_1, input_dim=tamanho - 1, init='uniform'))
    model.add(Activation('relu'))
    model.add(Dropout(drop))
    model.add(Dense(layer_2, init='uniform'))
    # activation='relu'
    model.add(Activation('relu'))
    model.add(Dropout(drop))
    #model.add(Dense(60, init='uniform'))
    #model.add(Activation('relu'))
    model.add(Dense(1, init='uniform'))
    model.add(Activation('sigmoid'))
    #activation='relu'

    opt = keras.optimizers.SGD(lr=rate, decay=decay)

    # Compile model
    model.compile(loss='binary_crossentropy',
                  optimizer=opt,
                  metrics=['accuracy'])

    # creating .fit
    model.fit(X_resampled,
              Y_resampled,
              nb_epoch=epoch,
              batch_size=batch,
              verbose=0)

    scores = model.evaluate(X_test, Y_test)
    print()
    print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))

    # predicting model
    predictions = model.predict(X_test)

    predictions = pandas.DataFrame(predictions, columns=['SCORE'])
    s = pandas.DataFrame(Y_test, columns=['CLASSE'])
    x = predictions.join(s)

    ks_max = teste_ks.KS(x)

    salvar.loc[i] = [
        ks_max, layer_1, layer_2, rate, epoch, batch, decay, drop, coluna
    ]
    salvar.to_csv("resultados_stepwise.csv", index=False)

    return ks_max