def main(): import dataset X, y = dataset.digits() X_train, X_test, y_train, y_test = testing.hold_out(X, y) clf = NNRBF(q=1000) clf.fit(X_train, y_train) print(clf.score(X_test, y_test))
def eval_classification(X, y, q=20): X_train, X_test, y_train, y_test = testing.hold_out(X, y) W, M = train(X_train, y_train, q=q, activation=processing.sigmoid) D_teste = predict(X_test, W, M, activation=processing.sigmoid) y_test = processing.encode_label(y_test) y_pred = processing.encode_label(D_teste) acc = round(testing.accuracy(y_test, y_pred), ndigits=2) return acc
def main(): X, y = load.iris() X_train, X_test, y_train, y_test = testing.hold_out(X, y) W = train(X_train, y_train) y_pred = predict(X_test, W) y_test = processing.encode_label(y_test) acc = testing.accuracy(y_test, y_pred) print("ACC: {:.2f} %".format(acc * 100))
def eval_classification(X, y, q=Q): X_train, X_test, y_train, y_test = testing.hold_out(X, y, test_size=TEST_SIZE) T, G = train(X_train, y_train, q=q, activation=processing.sigmoid) D_teste = predict(X_test, T, G, activation=processing.sigmoid) y_test = processing.encode_label(y_test) y_pred = processing.encode_label(D_teste) acc = round(testing.accuracy(y_test, y_pred), ndigits=2) return acc
def main(): # Train / test ELM print("-- Extreme Learning Machine") X, y = load.twomoons() q = 10 (X_train, X_test, y_train, y_test) = testing.hold_out(X, y) W, M = elm.train(X_train, y_train, q=10, activation=processing.sigmoid) y_pred = elm.predict(X_test, W, M, activation=processing.sigmoid) y_pred = step(y_pred) acc = round(testing.accuracy(y_test, y_pred), ndigits=2) acc_text = "ACC={:.2f}%".format(acc * 100) print("X.shape: ", X.shape) print("y.shape: ", y.shape) print("W.shape:", W.shape) print("M.shape: ", M.shape) print(acc_text) ## SURFACE DECISON x1, x2 = X[:, 0], X[:, 1] x_min = min(min(x1), min(x2)) x_max = max(max(x1), max(x2)) n = 200 linspace = np.linspace(x_min, x_max, n) points = [] for xi in linspace: for xj in linspace: points.append((xi, xj)) X_decision = np.array(points) y_elm = elm.predict(X_decision, W, M, activation=processing.sigmoid) x1_curve = [] x2_curve = [] for yi, p in zip(y_elm, points): if abs(yi) < 0.05: x1_curve.append(p[0]) x2_curve.append(p[1]) ax = plt.gca() ax.set_title("Two Moons: ELM / {}".format(acc_text)) ax.set_xlabel("x1") ax.set_ylabel("x2") plt.scatter(x1_curve, x2_curve, c='k', s=1) plt.scatter(x1, x2, c=colorize(y)) plt.show() plt.close()