Beispiel #1
0
def testingPoint(formu, dimension, number, lowerbound, largebound, path,
                 catagory):
    with open(path, 'wb') as csvfile:
        numberOfPoint = int(round(math.pow(number, (1.0 / dimension))))
        step = (largebound - lowerbound) / float(numberOfPoint)
        pointList = []
        for i in range(numberOfPoint):
            pointList.append(lowerbound + i * step)

        output = list(product(pointList, repeat=dimension))
        test = csv.writer(csvfile)
        for i in output:
            i = list(i)

            if catagory == formula.POLYHEDRON:
                flag = tf.polycircleModel(formu[0], formu[1], i)
            else:
                flag = tf.polynomialModel(formu[:-1], i, formu[-1])

            if (flag):
                i.insert(0, 0.0)
            else:
                i.insert(0, 1.0)
            test.writerow(i)


# testingPoint(2, 4000, -1.5, 1.5)
# randomPolynomial([[1,2],[3],[4,5,6]])
Beispiel #2
0
def PolyhedronPoint(formu, dimension, number, path, catagory):
    with open(path, 'wb') as csvfile:
        test = csv.writer(csvfile)
        numberOfPoint = int(
            round(math.pow(int(number / len(formu[0])), (1.0 / dimension))))
        # numberOfPoint = 300
        for j in range(len(formu[0])):  # j th center point

            largebound = formu[1][j]
            step = (2 * largebound) / float(numberOfPoint)
            pointList = []
            for i in range(numberOfPoint):
                pointList.append(-largebound + i * step)

            output = list(product(pointList, repeat=dimension))

            result = []
            for i in output:
                i = list(i)
                for d in range(len(i)):
                    i[d] += formu[0][j][d]
                flag = tf.polycircleModel(formu[0], formu[1], i)
                if (flag):
                    i.insert(0, 0.0)
                else:
                    i.insert(0, 1.0)
                test.writerow(i)
Beispiel #3
0
def randomCircle(formu):  # [[[12,0],[-12,0]],[4,4]]
    number = random.randint(1, 20)
    dim = len(formu[0][0])
    print(dim)

    trainname = "train" + "_".join(str(x) for x in formu[1]) + ".csv"
    testname = "test" + "_".join(str(x) for x in formu[1]) + ".csv"

    train_path = "./dataset/" + trainname
    test_path = "./dataset/" + testname

    with open(train_path, 'wb') as csvfile:
        with open(test_path, 'wb') as csvfile2:
            train = csv.writer(csvfile)
            test = csv.writer(csvfile2)

            for k in range(700):
                data_point = []
                generated_point = []
                if k % 3 == 0:
                    center = random.randint(0, len(formu[0]) - 1)
                    for i in range(dim):
                        generated_point.append(
                            random.uniform(
                                int(formu[0][center][i]) - 10,
                                int(formu[0][center][i]) + 10))
                else:
                    for i in range(dim):
                        generated_point.append(random.uniform(-1000, 1000))

                flag = tf.polycircleModel(formu[0], formu[1], generated_point)

                if (flag):
                    data_point.append(0.0)
                    data_point += generated_point

                    train.writerow(data_point)
                else:
                    data_point.append(1.0)
                    data_point += generated_point

                    train.writerow(data_point)
            PolyhedronPoint(formu, dim, 4000, test_path, formula.POLYHEDRON)
    return train_path, test_path
Beispiel #4
0
def generate_accuracy(train_path, test_path, formula, catagory):
    # Parameters
    learning_rate = 0.1
    training_epochs = 100
    display_step = 1
    changing_rate = [1000]
    step = 8
    pointsRatio = 0.25
    active_learning_iteration = 10

    train_set = []
    test_set_X = []
    test_set_Y = []
    train_set_X = []
    train_set_Y = []

    util.preprocess(train_set_X,
                    train_set_Y,
                    test_set_X,
                    test_set_Y,
                    train_path,
                    test_path,
                    read_next=True)

    # Network Parameters
    n_hidden_1 = 10  # 1st layer number of neurons
    n_hidden_2 = 10  # 2nd layer number of neurons
    n_input = len(train_set_X[0])  # MNIST data input (img shape: 28*28)
    n_classes = 1  # MNIST total classes (0-9 digits)

    random_seed = 0
    random.seed(random_seed)
    np.random.seed(random_seed)
    tf.set_random_seed(random_seed)
    # tf Graph input
    X = tf.placeholder("float", [None, n_input])
    Y = tf.placeholder("float", [None, n_classes])
    weights = {
        'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], mean=0)),
        'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], mean=0)),
        'out': tf.Variable(tf.random_normal([n_hidden_1, n_classes], mean=0))
    }
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }

    # Construct model
    logits = util.multilayer_perceptron(X, weights, biases)

    # Define loss and optimizer
    loss_op = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=Y))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    # optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    # Initializing the variables
    train_op = optimizer.minimize(loss_op)
    # Initializing the variables
    init = tf.global_variables_initializer()

    grads = tf.gradients(loss_op, weights["out"])
    newgrads = tf.gradients(logits, X)

    y = None

    train_acc_list = []
    test_acc_list = []
    result = []

    test_list = []
    for i in range(20):
        test_list.append([0, i])

    wb = xlwt.Workbook()
    ws = wb.add_sheet("farcircle_gradient")

    # result.append(["Active learning using gradients"])
    # result.append(model)

    for i in range(active_learning_iteration):
        print("*******", i, "th loop:")
        print("training set size", len(train_set_X))
        # ten times training
        with tf.Session() as sess:
            sess.run(init)
            # h1 = sess.run(weights["h1"])
            # out = sess.run(weights["out"])
            #
            # print("h1", h1)
            # print("out", out)

            g = sess.run(newgrads, feed_dict={X: train_set_X, Y: train_set_Y})
            ##print(g)
            smallGradient_Unchanged = 0.0
            smallGradient_total = 0.0
            largeGradient_Unchanged = 0.0
            largeGradient_total = 0.0

            for epoch in range(training_epochs):
                _, c = sess.run([train_op, loss_op],
                                feed_dict={
                                    X: train_set_X,
                                    Y: train_set_Y
                                })

            ##print(g)
            ##print("Epoch:", '%04d' % (epoch + 1), "cost={:.9f}".format(c))

            g = sess.run(newgrads, feed_dict={X: train_set_X, Y: train_set_Y})
            # test_g = sess.run(newgrads, feed_dict={X: test_list})
            # test_new_y = sess.run(logits, feed_dict={X: test_list})

            # for i in range(len(test_list)):
            #     print("data point ", test_list[i], " gradient ", test_g[0][i], " label ", test_new_y[i])

            # print(g)
            train_y = sess.run(logits, feed_dict={X: train_set_X})
            test_y = sess.run(logits, feed_dict={X: test_set_X})

            ##print(len(train_y))
            ##print(len(train_set_Y))

            train_acc = util.calculateAccuracy(train_y, train_set_Y, False)
            test_acc = util.calculateAccuracy(test_y, test_set_Y, False)

            train_acc_list.append(train_acc)
            test_acc_list.append(test_acc)

            # predicted = tf.cast(logits > 0.5, dtype=tf.float32)
            # util.plot_decision_boundary(lambda x: sess.run(predicted, feed_dict={X:x}), train_set_X, train_set_Y)

            new_train_set_X = []
            new_train_set_Y = []

            gradientList = g[0].tolist()

            g_list = []

            # print (type(gradientList))
            for i in range(len(g[0])):
                grad = 0
                for j in range(n_input):
                    grad += g[0][i][j] * g[0][i][j]
                g_list.append(math.sqrt(grad))
            util.quickSort(g_list)

            threshold = g_list[int(-len(gradientList) * pointsRatio)]
            # threshold = math.sqrt(threshold[0]*threshold[0]+threshold[1]*threshold[1]+threshold[2]*threshold[2]+threshold[3]*threshold[3])
            print(threshold)

            smallGradient_Unchanged = 0
            smallGradient_total = 0
            largeGradient_Unchanged = 0
            largeGradient_total = 0

            # print("boundary points")

            #################################
            # decide new points

            # decision = decide_gradient(n_input)
            # for j in range(len(train_set_X)):
            #     grad = 0
            #     for k in range(n_input):
            #         grad += g[0][j][k] * g[0][j][k]
            #     g_total = math.sqrt(grad)
            #     # print("Im here ==================================")

            #     if (g_total > threshold):
            #         new_pointsX = []
            #         for k in range(len(decision)):
            #             tmp = []
            #             for h in range(n_input):
            #                 if (decision[k][h]==True):
            #                     tmp.append(train_set_X[j][h] - g[0][i][h] * (step / g_total))
            #                 else:
            #                     tmp.append(train_set_X[j][h] + g[0][i][h] * (step / g_total))
            #             # tmp[k].append(train_set_X[j][k] + g[0][j][k] * (step / g_total))
            #             new_pointsX.append(tmp)
            #         new_pointsX.append(train_set_X[j])
            #         new_pointsY = sess.run(logits, feed_dict={X: new_pointsX})

            #         original_y = new_pointsY[-1]
            #         distances = [x for x in new_pointsY]
            #         distances = distances[:-1]
            #         # ans = 0
            #         if (original_y < 0.5):
            #             ans = max(distances)
            #         else:
            #             ans = min(distances)
            #         new = new_pointsX[distances.index(ans)]

            ###########################################
            # decide new points dimension by dimension
            for j in range(len(train_set_X)):
                grad = 0
                for k in range(n_input):
                    grad += g[0][j][k] * g[0][j][k]
                g_total = math.sqrt(grad)
                # print("Im here ==================================")
                new = []
                if (g_total > threshold):
                    for k in range(n_input):

                        tmp1 = [x for x in train_set_X[j]]
                        tmp1[k] = tmp1[k] + g[0][j][k] * (step / g_total)
                        tmp2 = [x for x in train_set_X[j]]
                        tmp2[k] = tmp2[k] - g[0][j][k] * (step / g_total)

                        new_pointsX = [tmp1, tmp2, train_set_X[j]]
                        new_pointsY = sess.run(logits,
                                               feed_dict={X: new_pointsX})

                        original_y = new_pointsY[-1]
                        distances = [x for x in new_pointsY]
                        distances = distances[:-1]
                        # ans = 0
                        if (original_y < 0.5):
                            ans = max(distances)
                        else:
                            ans = min(distances)
                        one_position = new_pointsX[distances.index(ans)]
                        if (one_position == tmp1):
                            new.append(tmp1[k])
                        else:
                            new.append(tmp2[k])

#############################################

                    if (new not in train_set_X):
                        new_train_set_X.append(new)
                        haha = new
                        if catagory == f.POLYHEDRON:
                            flag = testing_function.polycircleModel(
                                formula[0], formula[1], new)
                        else:
                            flag = testing_function.polynomialModel(
                                formula[:-1], new, formula[-1])
                        if (flag):
                            new_train_set_Y.append([0])
                        else:
                            new_train_set_Y.append([1])

                ##boundary remaining test
                ##small gradient test
            #         X1=train_set_X[j][0]
            #         X2=train_set_X[j][1]
            #         newY=train_set_Y[j][0]
            #         g_x = g[0][j][0]
            #         g_y = g[0][j][1]
            #         g_total = math.sqrt(g_x*g_x+g_y*g_y)

            #         if (g_total==0) :
            #             tmpX1 = X1 - step
            #             tmpX2 = X2 + step
            #         else:
            #             tmpX1 = X1 - g[0][j][1]*(step/g_total)
            #             tmpX2 = X2 + g[0][j][0]*(step/g_total)
            #         ##print ("Y",newY)
            #         if(g[0][j][0]<0.01):

            #         	smallGradient_total+=1
            #         	if(newY==0):
            #         		if(polynomialModel(tmpX1,tmpX2)):
            #         			smallGradient_Unchanged+=1.0
            #         	elif(newY==1):
            #         		if(not polynomialModel(tmpX1,tmpX2)):
            #         			smallGradient_Unchanged+=1.0

            #         # ##large gradient test
            #         if(g[0][j][0]>0.01):
            #         	# newtmpX1=train_set_X[j][0]-g[0][j][0]*k
            #         	# newtmpX2=train_set_X[j][1]-g[0][j][1]*k

            #         	largeGradient_total+=1
            #         	if(newY==0):
            #         		if(polynomialModel(tmpX1,tmpX2)):
            #         			largeGradient_Unchanged+=1.0
            #         	elif(newY==1):
            #         		if(not polynomialModel(tmpX1,tmpX2)):
            #         			largeGradient_Unchanged+=1.0

            # # print("generated data points:")
            # for j in range(len(new_train_set_X)):
            #     print("(", new_train_set_X[j][0], ", ", new_train_set_X[j][1], ", ", new_train_set_X[j][2], ")", "label: ", new_train_set_Y[j][0])
            # if (smallGradient_total != 0) :
            #     print ("Small gradients", smallGradient_Unchanged/smallGradient_total)
            # if (largeGradient_total != 0):
            #     print ("Large gradients", largeGradient_Unchanged/largeGradient_total)
            train_set_X = train_set_X + new_train_set_X
            train_set_Y = train_set_Y + new_train_set_Y

            # print(train_set_X)
    # for i, row in enumerate(result):
    #     for j, col in enumerate(row):
    #         if (i == 1):
    #             if (type(model[0]) != list):
    #                 ws.write(i, j, str(col) + "x^" + str(len(model) - j))
    #             else:
    #                 ws.write(i, j, str(col))
    #         else:
    #             ws.write(i, j, col)

    # wb.save("train_results.xls")

    # print(smallGradient_total)
    # print (smallGradient_Unchanged)
    # print(largeGradient_total)
    # print (largeGradient_Unchanged)

    # print ("small gradient unchanged rate: ",smallGradient_Unchanged/smallGradient_total)
    # print ("large gradient unchanged rate: ", largeGradient_Unchanged/largeGradient_total)

    result.append(train_acc_list)
    result.append(test_acc_list)
    return result
Beispiel #5
0
def balancingPoint(inflag, points, gradient, length_added, formu, category,
                   std_dev):

    times = 0
    outputX = []
    iter = 0
    flag = False
    count = 0.0
    wrong = 0.0
    step = std_dev
    while True:
        for i in range(len(points)):
            g_total = 0
            grad = 0
            for k in range(len(points[0])):
                grad += gradient[i][k] * gradient[i][k]
            g_total = math.sqrt(grad)
            tmpList = []

            for j in range(len(points[i])):
                tmpValue = points[i][j] + gradient[i][j] * (step / g_total)
                tmpList.append(tmpValue)

            if category == formula.POLYHEDRON:
                pointflag = testing_function.polycircleModel(
                    formu[0], formu[1], tmpList)
            elif category == formula.POLYNOMIAL:
                pointflag = testing_function.polynomialModel(
                    formu[:-1], tmpList, formu[-1])
            count += 1

            if inflag == 1 and pointflag:
                times += 1
                wrong += 1
                if times > 100:
                    flag = True
                    break
                continue
            if inflag == 0 and not pointflag:
                times += 1
                wrong += 1
                if times > 100:
                    flag = True
                    break
                continue
            outputX.append(tmpList)
            times += 1
            if times > 100:
                flag = True
                break
            iter += 1
            if (iter == length_added):
                flag = True
                break
        if (flag == True):
            break
    print(count, wrong)
    print("points added \n", outputX)
    print("Boundary remaining accuracy: ", float((count - wrong) / count))
    return outputX


# label_0=[[1,2]]
# label_1=[[1,2],[3,4],[5,6],[7,8],[9,10]]

# gra0=[[0.1,0.2]]
# gra1=[]
# balancingPoint(label_0,label_1,gra0,gra1)
Beispiel #6
0
def generate_accuracy(train_data_file, test_data_file, formu, category):

    # Parameters
    learning_rate = 0.1
    training_epochs = 100

    pointsNumber = 10
    active_learning_iteration = 10
    threhold = 5
    test_set_X = []
    test_set_Y = []
    train_set_X = []
    train_set_Y = []

    util.preprocess(train_set_X,
                    train_set_Y,
                    test_set_X,
                    test_set_Y,
                    train_data_file,
                    test_data_file,
                    read_next=True)
    # Network Parameters
    n_hidden_1 = 10  # 1st layer number of neurons
    n_hidden_2 = 10  # 2nd layer number of neurons
    n_input = len(train_set_X[0])  # MNIST data input (img shape: 28*28)
    n_classes = 1  # MNIST total classes (0-9 digits)

    random_seed = 0
    random.seed(random_seed)
    np.random.seed(random_seed)
    tf.set_random_seed(random_seed)

    train_acc_list = []
    test_acc_list = []
    result = []

    # tf Graph input
    X = tf.placeholder("float", [None, n_input])
    Y = tf.placeholder("float", [None, n_classes])
    weights = {
        'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], mean=0)),
        'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], mean=0)),
        'out': tf.Variable(tf.random_normal([n_hidden_1, n_classes], mean=0))
    }
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }

    # Construct model
    logits = util.multilayer_perceptron(X, weights, biases)

    # Define loss and optimizer
    loss_op = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=Y))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    # optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    # Initializing the variables
    train_op = optimizer.minimize(loss_op)
    # Initializing the variables
    init = tf.global_variables_initializer()

    newgrads = tf.gradients(logits, X)
    y = None

    # class point_pair:
    #     def __init__(self, point_label_0, point_label_1, distance):
    #         self.point_label_0 = point_label_0
    #         self.point_label_1 = point_label_1
    #         self.distance = distance

    for i in range(active_learning_iteration):

        print("*******", i, "th loop:")
        print("training set size", len(train_set_X))
        pointsNumber = 10
        with tf.Session() as sess:
            sess.run(init)
            label_0 = []
            label_1 = []
            label_0, label_1 = util.data_partition(train_set_X, train_set_Y)
            print(len(label_0), len(label_1))

            if (len(label_1) == 0 or len(label_0) == 0):
                raise Exception("Cannot be classified")

            distanceList = []
            point_pairList = {}

            for m in label_0:
                for n in label_1:
                    distance = 0
                    for d in range(n_input):

                        distance += (m[d] - n[d]) * (m[d] - n[d])
                    distance = math.sqrt(distance)
                    if (distance > threhold):

                        # if(distance in distanceList):
                        ##print ("cnm")
                        key = ()
                        for h in range(n_input):
                            tmpKey = (m[h], n[h])
                            key = key + tmpKey

                        value = distance
                        if (not point_pairList):
                            point_pairList[key] = value
                        elif (not (key in point_pairList.keys())):
                            point_pairList[key] = value
                        distanceList.append(distance)
                # print(m,n)

            # print (distanceList)

            util.quickSort(distanceList)
            # print(distanceList)
            selectedList = []
            # pivot=0
            # while pivot<pointsNumber:

            # 	if(distanceList[pivot] in selectedList):
            # 		pointsNumber+=1
            # 		pivot+=1

            # 	else:

            # 		selectedList.append(distanceList[pivot])
            # 		pivot+=1
            length = len(distanceList)
            index1 = length / 3
            index2 = length / 3 * 2
            pointer = 0
            for p in range(3):
                if (pointer < index1):
                    num = int(pointsNumber * 0.6)
                    util.addPoints(num, distanceList, selectedList, pointer)
                    pointer = index1
                elif (pointer < index2):
                    num = int(pointsNumber * 0.3)
                    util.addPoints(num, distanceList, selectedList, pointer)
                    #
                    pointer = index2
                else:
                    num = int(pointsNumber * 0.1)
                    util.addPoints(num, distanceList, selectedList, pointer)

                # pick large pooints

            ##print (selectedList)
            ##print (distanceList)
            # print (len(selectedList))
            # print (len(point_pairList))
            # print (train_set_X)

            for m in selectedList:
                for k, v in point_pairList.items():
                    if (m == v):

                        point_0 = []
                        point_1 = []
                        for b in range(len(k)):
                            if (b % 2 == 0):
                                point_0.append(k[b])
                            else:
                                point_1.append(k[b])
                        middlepoint = []

                        for b in range(n_input):
                            middlepoint.append((point_0[b] + point_1[b]) / 2.0)

                        # print (point_0)
                        # print("original point", point_0, point_1)
                        # print("middlepoint", middlepoint)

                        if category == formula.POLYHEDRON:
                            flag = testing_function.polycircleModel(
                                formu[0], formu[1], middlepoint)
                        elif category == formula.POLYNOMIAL:
                            flag = testing_function.polynomialModel(
                                formu[:-1], middlepoint, formu[-1])

                        if (flag):
                            if (middlepoint not in train_set_X):
                                train_set_X.append(middlepoint)
                                train_set_Y.append([0])

                        else:
                            if (middlepoint not in train_set_X):
                                train_set_X.append(middlepoint)
                                train_set_Y.append([1])

            label_0, label_1 = util.data_partition(train_set_X, train_set_Y)
            length_0 = len(label_0) + 0.0
            length_1 = len(label_1) + 0.0

            print("label 0", length_0, "label 1", length_1)
            if (length_0 / length_1 > 0.7 and length_0 / length_1 < 1) or (
                    length_1 / length_0 > 0.7 and length_1 / length_0 < 1):
                for epoch in range(training_epochs):
                    _, c = sess.run([train_op, loss_op],
                                    feed_dict={
                                        X: train_set_X,
                                        Y: train_set_Y
                                    })

                train_y = sess.run(logits, feed_dict={X: train_set_X})
                test_y = sess.run(logits, feed_dict={X: test_set_X})

                print("new train size after mid point", len(train_set_X),
                      len(train_set_Y))
                train_acc = util.calculateAccuracy(train_y, train_set_Y, False)
                test_acc = util.calculateAccuracy(test_y, test_set_Y, False)
                train_acc_list.append(train_acc)
                test_acc_list.append(test_acc)
                continue

            label_selected = []
            gradient_selected = []
            length_added = 0

            # compare if data is unbalanced
            label_flag = 0
            g = sess.run(newgrads, feed_dict={X: train_set_X, Y: train_set_Y})
            label_0, label_1, label_0_gradient, label_1_gradient = util.data_partition_gradient(
                train_set_X, train_set_Y, g[0])
            if length_0 / length_1 < 0.7:
                label_selected = label_0
                gradient_selected = label_0_gradient
                length_added = length_1 - length_0
                label_flag = 0
            elif length_1 / length_0 < 0.7:
                label_selected = label_1
                gradient_selected = label_1_gradient
                length_added = length_0 - length_1
                label_flag = 1
            else:
                continue

################################################################
# get all gradients for the unbalanced label points

#boundary remaining
# print(g)
            gradient_list = []
            decision = decide_gradient(len(label_selected[0]))
            for j in range(len(label_selected)):
                grad = 0
                for k in range(len(label_selected[0])):
                    grad += gradient_selected[j][k] * gradient_selected[j][k]
                g_total = math.sqrt(grad)
                # print("Im here ==================================")
                if g_total == 0:
                    tmpg = []
                    for d in range(len(label_selected[0])):
                        tmpg.append(1)
                        gradient_list.append(tmpg)
                    continue

#############################################################

                new_pointsX = []
                for k in range(len(decision)):
                    tmp = []
                    for h in range(len(label_selected[0])):
                        if (decision[k][h] == True):
                            tmp.append(label_selected[j][h] -
                                       gradient_selected[j][h] *
                                       (step / g_total))
                        else:
                            tmp.append(label_selected[j][h] +
                                       gradient_selected[j][h] *
                                       (step / g_total))
                    # tmp[k].append(train_set_X[j][k] + g[0][j][k] * (step / g_total))
                    new_pointsX.append(tmp)
                new_pointsX.append(label_selected[j])
                new_pointsY = sess.run(logits, feed_dict={X: new_pointsX})

                original_y = new_pointsY[-1]
                distances = [x for x in new_pointsY]
                distances = distances[:-1]
                # ans = 0
                if (original_y < 0.5):
                    ans = min(distances)
                else:
                    ans = max(distances)
                direction = decision[distances.index(ans)]

                ####################################################
                new = []
                n_input = len(label_selected[0])
                for k in range(n_input):
                    tmp1 = []
                    tmp2 = []
                    for h in range(n_input):
                        if h == k:
                            tmp1.append(train_set_X[j][h] - g[0][i][h] *
                                        (step / g_total))
                            tmp2.append(train_set_X[j][h] + g[0][i][h] *
                                        (step / g_total))
                        else:
                            tmp1.append(train_set_X[j][h])
                            tmp2.append(train_set_X[j][h])

                    new_pointsX = [tmp1, tmp2, train_set_X[j]]
                    new_pointsY = sess.run(logits, feed_dict={X: new_pointsX})

                    original_y = new_pointsY[-1]
                    distances = [x for x in new_pointsY]
                    distances = distances[:-1]
                    # ans = 0
                    if (original_y < 0.5):
                        ans = max(distances)
                    else:
                        ans = min(distances)
                    one_position = new_pointsX[distances.index(ans)]
                    if (one_position == tmp1):
                        new.append(tmp1[k])
                    else:
                        new.append(tmp2[k])
# continue working on this part
#######################################################

                return_value = []
                for k in range(len(direction)):
                    if direction[k] == True:
                        return_value.append(-gradient_selected[j][k])
                    else:
                        return_value.append(gradient_selected[j][k])
                gradient_list.append(return_value)

################################################################
            count = 0.0
            point_distance_list = []
            for p in range(len(train_set_X) - 1):
                for q in range(p, len(train_set_X)):
                    distance = 0
                    for d in range(n_input):

                        distance += (train_set_X[p][d] - train_set_X[q][d]) * (
                            train_set_X[p][d] - train_set_X[q][d])
                    distance = math.sqrt(distance)
                    point_distance_list.append(distance)
            std_dev = np.std(point_distance_list)
            print("standard deviation", std_dev)
            newX = br.balancingPoint(label_flag, label_selected, gradient_list,
                                     length_added, formu, category, std_dev)

            for point in newX:
                if category == formula.POLYHEDRON:
                    flag = testing_function.polycircleModel(
                        formu[0], formu[1], point)
                elif category == formula.POLYNOMIAL:
                    flag = testing_function.polynomialModel(
                        formu[:-1], point, formu[-1])

                if (flag):

                    train_set_X.append(point)
                    train_set_Y.append([0])

                else:

                    train_set_X.append(point)
                    train_set_Y.append([1])

            print("new training size after boundary remaining",
                  len(train_set_X), len(train_set_Y))
            for epoch in range(training_epochs):
                _, c = sess.run([train_op, loss_op],
                                feed_dict={
                                    X: train_set_X,
                                    Y: train_set_Y
                                })

            train_y = sess.run(logits, feed_dict={X: train_set_X})
            test_y = sess.run(logits, feed_dict={X: test_set_X})

            print("new train size after mid point", len(train_set_X),
                  len(train_set_Y))
            train_acc = util.calculateAccuracy(train_y, train_set_Y, False)
            test_acc = util.calculateAccuracy(test_y, test_set_Y, False)
            train_acc_list.append(train_acc)
            test_acc_list.append(test_acc)

    result.append(train_acc_list)
    result.append(test_acc_list)
    return result