Beispiel #1
0
def test_if_inference_output_is_valid(tmpdir):
    """Test that the output inferred from ONNX model is same as from PyTorch"""
    model = BoringModel()
    model.example_input_array = torch.randn(5, 32)

    trainer = Trainer(max_epochs=2)
    trainer.fit(model)

    model.eval()
    with torch.no_grad():
        torch_out = model(model.example_input_array)

    file_path = os.path.join(tmpdir, "model.onnx")
    model.to_onnx(file_path, model.example_input_array, export_params=True)

    ort_session = onnxruntime.InferenceSession(file_path)

    def to_numpy(tensor):
        return tensor.detach().cpu().numpy(
        ) if tensor.requires_grad else tensor.cpu().numpy()

    # compute ONNX Runtime output prediction
    ort_inputs = {
        ort_session.get_inputs()[0].name: to_numpy(model.example_input_array)
    }
    ort_outs = ort_session.run(None, ort_inputs)

    # compare ONNX Runtime and PyTorch results
    assert np.allclose(to_numpy(torch_out),
                       ort_outs[0],
                       rtol=1e-03,
                       atol=1e-05)
Beispiel #2
0
def test_model_saves_with_example_input_array(tmpdir):
    """Test that ONNX model saves with_example_input_array and size is greater than 3 MB"""
    model = BoringModel()
    model.example_input_array = torch.randn(5, 32)

    file_path = os.path.join(tmpdir, "model.onnx")
    model.to_onnx(file_path)
    assert os.path.exists(file_path) is True
    assert os.path.getsize(file_path) > 4e2
Beispiel #3
0
def test_verbose_param(tmpdir, capsys):
    """Test that output is present when verbose parameter is set"""
    model = BoringModel()
    model.example_input_array = torch.randn(5, 32)

    file_path = os.path.join(tmpdir, "model.onnx")
    model.to_onnx(file_path, verbose=True)
    captured = capsys.readouterr()
    assert "graph(%" in captured.out
Beispiel #4
0
def test_error_if_no_input(tmpdir):
    """Test that an error is thrown when there is no input tensor"""
    model = BoringModel()
    model.example_input_array = None
    file_path = os.path.join(tmpdir, "model.onnx")
    with pytest.raises(
            ValueError,
            match=r'Could not export to ONNX since neither `input_sample` nor'
            r' `model.example_input_array` attribute is set.'):
        model.to_onnx(file_path)
Beispiel #5
0
def test_model_saves_on_gpu(tmpdir):
    """Test that model saves on gpu"""
    model = BoringModel()
    trainer = Trainer(gpus=1, max_epochs=1)
    trainer.fit(model)

    file_path = os.path.join(tmpdir, "model.onnx")
    input_sample = torch.randn((1, 32))
    model.to_onnx(file_path, input_sample)
    assert os.path.isfile(file_path)
    assert os.path.getsize(file_path) > 4e2
Beispiel #6
0
def test_model_saves_with_input_sample(tmpdir):
    """Test that ONNX model saves with input sample and size is greater than 3 MB"""
    model = BoringModel()
    trainer = Trainer(max_epochs=1)
    trainer.fit(model)

    file_path = os.path.join(tmpdir, "model.onnx")
    input_sample = torch.randn((1, 32))
    model.to_onnx(file_path, input_sample)
    assert os.path.isfile(file_path)
    assert os.path.getsize(file_path) > 4e2
Beispiel #7
0
def test_model_saves_with_example_output(tmpdir):
    """Test that ONNX model saves when provided with example output"""
    model = BoringModel()
    trainer = Trainer(max_epochs=1)
    trainer.fit(model)

    file_path = os.path.join(tmpdir, "model.onnx")
    input_sample = torch.randn((1, 32))
    model.eval()
    example_outputs = model.forward(input_sample)
    model.to_onnx(file_path, input_sample, example_outputs=example_outputs)
    assert os.path.exists(file_path) is True