Beispiel #1
0
    def test_metrics(self):
        with self.test_session():
            graph = mock_gan()

            gan = mock_gan()
            gan.create()
            loss = BoundaryEquilibriumLoss(gan, loss_config)
            d_loss, g_loss = loss.create()
            metrics = loss.metrics
            self.assertTrue(metrics['k'] != None)
 def test_create(self):
     with self.test_session():
         graph = mock_gan()
         gan = mock_gan()
         gan.create()
         loss = LambGanLoss(gan, loss_config)
         d_loss, g_loss = loss.create()
         d_shape = gan.ops.shape(d_loss)
         g_shape = gan.ops.shape(g_loss)
         self.assertEqual(d_shape, [])
         self.assertEqual(g_shape, [])
Beispiel #3
0
 def test_batch_norm(self):
     with self.test_session():
         config['layer_regularizer'] = 'batch_norm'
         gan = mock_gan()
         generator = ResizableGenerator(config=config, gan=gan, input=gan.latent.sample)
         generator.layer_regularizer(tf.constant(1, shape=[1,1,1,1], dtype=tf.float32))
         self.assertNotEqual(len(generator.variables()), 0)
Beispiel #4
0
 def test_train(self):
     with self.test_session():
         gan = mock_gan()
         args = hc.Config({"size": "1", "steps": 1, "method": "train", "save_every": -1})
         cli = hg.CLI(gan, args)
         cli.train()
         self.assertEqual(cli.gan, gan)
Beispiel #5
0
 def test_run(self):
     with self.test_session():
         gan = mock_gan()
         args = hc.Config({"size": "1"})
         cli = hg.CLI(gan, args)
         cli.run()
         self.assertEqual(cli.gan, gan)
Beispiel #6
0
 def test_initial_depth(self):
     with self.test_session():
         gan = mock_gan()
         generator = ResizableGenerator(config=config, gan=gan, input=gan.latent.sample)
         print(generator.depths())
         depths = generator.depths()
         self.assertEqual(depths[-1], 2)
Beispiel #7
0
 def test_cli(self):
     with self.test_session():
         gan = mock_gan()
         args = {
         }
         cli = hg.CLI(gan, args)
         self.assertEqual(cli.gan, gan)
Beispiel #8
0
 def test_run(self):
     with self.test_session():
         gan = mock_gan()
         args = hc.Config({"size": "1"})
         cli = hg.CLI(gan, args)
         cli.run()
         self.assertEqual(cli.gan, gan)
Beispiel #9
0
    def test_config(self):
        with self.test_session():
            gan = mock_gan()
            gan.create()

            sampler = BatchSampler(gan)
            self.assertEqual(sampler._sample()['generator'].shape[-1], 1)
Beispiel #10
0
 def test_metric(self):
     with self.test_session():
         gan = mock_gan()
         loss = SupervisedLoss(gan, loss_config)
         d_loss, g_loss = loss.create()
         metrics = loss.metrics
         self.assertTrue(metrics['d_class_loss'] != None)
Beispiel #11
0
 def test_create_component(self):
     with self.test_session():
         gan = mock_gan()
         distribution = gan.create_component(gan.config.latent)
         self.assertEqual(
             type(distribution),
             hg.distributions.uniform_distribution.UniformDistribution)
 def test_metrics(self):
     with self.test_session():
         gan = mock_gan()
         loss = BoundaryEquilibriumLoss(gan, loss_config)
         d_loss, g_loss = loss.create()
         metrics = loss.metrics
         self.assertTrue(metrics['k'] != None)
    def test_config(self):
        with self.test_session():
            gan = mock_gan(batch_size=32)
            gan.latent = UniformDistribution(gan, {'z':2, 'min': -1, 'max': 1, 'projections':['identity']})

            sampler = GridSampler(gan)
            self.assertEqual(sampler._sample()['generator'].shape[-1], 1)
Beispiel #14
0
 def test_adds_supervised_loss(self):
     with self.test_session():
         gan = mock_gan(y=2)
         args = hc.Config({"size": "1", "steps": 1, "method": "train", "save_every": -1, "classloss": True})
         cli = hg.CLI(gan, args)
         cli.add_supervised_loss()
         self.assertEqual(type(cli.gan.loss), MultiComponent)
         self.assertEqual(type(cli.gan.loss.components[0]), SupervisedLoss)
Beispiel #15
0
 def test_create(self):
     with self.test_session():
         gan = mock_gan()
         loss = SupervisedLoss(gan, loss_config)
         d_loss, g_loss = loss.create()
         d_shape = gan.ops.shape(d_loss)
         self.assertEqual(d_shape, [1])
         self.assertEqual(g_loss, None)
Beispiel #16
0
 def test_categories(self):
     with self.test_session():
         gan = mock_gan()
         encoder = CategoryEncoder(gan, config)
         gan.encoder = encoder
         gan.encoder.create()
         gan.create()
         self.assertEqual(
             gan.ops.shape(encoder.sample)[1] // 2, len(encoder.categories))
    def test_config(self):
        with self.test_session():
            gan = mock_gan(batch_size=32)
            gan.latent = UniformDistribution(gan, {'z':2, 'min': -1, 'max': 1, 'projections':['identity']})
            gan.latent.create()
            gan.create()

            sampler = GridSampler(gan)
            self.assertEqual(sampler._sample()['generator'].shape[-1], 1)
Beispiel #18
0
 def test_create(self):
     with self.test_session():
         gan = mock_gan()
         loss = LeastSquaresLoss(gan, loss_config)
         d_loss, g_loss = loss.create()
         d_shape = gan.ops.shape(d_loss)
         g_shape = gan.ops.shape(g_loss)
         self.assertEqual(sum(d_shape), 0)
         self.assertEqual(sum(g_shape), 0)
 def test_output_string(self):
     with self.test_session():
         gan = mock_gan()
         config = {'d_learn_rate': 1e-3, 'g_learn_rate': 1e-3, 'd_trainer': 'rmsprop', 'g_trainer': 'adam'}
         trainer = AlternatingTrainer(gan, config)
         c = tf.constant(1)
         self.assertTrue('d_loss' in trainer.output_string({'d_loss':c}))
         self.assertTrue('g_loss' in trainer.output_string({'g_loss':c}))
         self.assertEqual(len(trainer.output_variables({'a': c, 'b': c})), 2)
 def test_create(self):
     with self.test_session():
         gan = mock_gan()
         loss = LambGanLoss(gan, loss_config)
         d_loss, g_loss = loss.create()
         d_shape = gan.ops.shape(d_loss)
         g_shape = gan.ops.shape(g_loss)
         self.assertEqual(d_shape, [])
         self.assertEqual(g_shape, [])
 def test_create(self):
     with self.test_session():
         gan = mock_gan()
         loss = LeastSquaresLoss(gan, loss_config)
         d_loss, g_loss = loss.create()
         d_shape = gan.ops.shape(d_loss)
         g_shape = gan.ops.shape(g_loss)
         self.assertEqual(sum(d_shape), 0)
         self.assertEqual(sum(g_shape), 0)
 def test_output_string(self):
     with self.test_session():
         gan = mock_gan()
         gan.create()
         config = {'d_learn_rate': 1e-3, 'g_learn_rate': 1e-3, 'd_trainer': 'rmsprop', 'g_trainer': 'adam'}
         trainer = AlternatingTrainer(gan, config)
         c = tf.constant(1)
         self.assertTrue('d_loss' in trainer.output_string({'d_loss':c}))
         self.assertTrue('g_loss' in trainer.output_string({'g_loss':c}))
         self.assertEqual(len(trainer.output_variables({'a': c, 'b': c})), 2)
Beispiel #23
0
 def test_create(self):
     with self.test_session():
         gan = mock_gan()
         gan.create()
         loss = BoundaryEquilibriumLoss(gan, loss_config)
         d_loss, g_loss = loss.create()
         d_shape = gan.ops.shape(d_loss)
         g_shape = gan.ops.shape(g_loss)
         self.assertEqual(sum(d_shape), 0)
         self.assertEqual(sum(g_shape), 0)
Beispiel #24
0
 def test_new(self):
     with self.test_session():
         try: 
             os.remove('test.json')
         except Exception:
             pass
         gan = mock_gan()
         args = hc.Config({"size": "1", "steps": 1, "method": "train", "directory": "test"})
         cli = hg.CLI(gan, args)
         cli.new()
         self.assertTrue(os.path.isfile('test.json'))
Beispiel #25
0
 def test_config(self):
     with self.test_session():
         config = {
             'd_learn_rate': 1e-3,
             'g_learn_rate': 1e-3,
             'd_trainer': 'rmsprop',
             'g_trainer': 'adam'
         }
         gan = mock_gan()
         trainer = AlternatingTrainer(gan, config)
         self.assertEqual(trainer.config.d_learn_rate, 1e-3)
Beispiel #26
0
 def test_train(self):
     with self.test_session():
         gan = mock_gan()
         args = hc.Config({
             "size": "1",
             "steps": 1,
             "method": "train",
             "save_every": -1
         })
         cli = hg.CLI(gan, args)
         cli.train()
         self.assertEqual(cli.gan, gan)
 def test_create(self):
     return None #disabled for now
     with self.test_session():
         remove_d_config = hg.Configuration.default()
         remove_d_config['discriminator'] = None
         remove_d_config['loss'] = None
         remove_d_config['trainer'] = None
         gan = mock_gan(config = remove_d_config)
         discriminator = AutoencoderDiscriminator(gan, config)
         gan.encoder = gan.create_component(gan.config.encoder)
         gan.generator = gan.create_component(gan.config.generator)
         self.assertEqual(int(net.get_shape()[1]), 32)
    def test_sample(self):
        with self.test_session():
            gan = mock_gan()
            mock_sample = tf.constant(1., shape=[1,1])
            multi = MultiComponent(combine='concat',
                components=[
                    MockLoss(gan, sample=mock_sample),
                    MockLoss(gan, sample=mock_sample)
            ])

            gan.encoder = multi
            self.assertEqual(gan.ops.shape(multi.sample), [1,2])
Beispiel #29
0
 def test_create(self):
     return None  #disabled for now
     with self.test_session():
         remove_d_config = hg.Configuration.default()
         remove_d_config['discriminator'] = None
         remove_d_config['loss'] = None
         remove_d_config['trainer'] = None
         gan = mock_gan(config=remove_d_config)
         discriminator = AutoencoderDiscriminator(gan, config)
         gan.encoder = gan.create_component(gan.config.encoder)
         gan.generator = gan.create_component(gan.config.generator)
         self.assertEqual(int(net.get_shape()[1]), 32)
Beispiel #30
0
 def test_safe_new(self):
     with self.test_session():
         try: 
             os.remove('test.json')
         except Exception:
             pass
         gan = mock_gan()
         args = hc.Config({"size": "1", "steps": 1, "method": "train", "directory": "test"})
         cli = hg.CLI(gan, args)
         cli.new()
         with self.assertRaises(ValidationException):
             cli.new()
Beispiel #31
0
    def test_proxy_methods(self):
        with self.test_session():
            gan = mock_gan()
            mock_sample = tf.constant(1., shape=[1, 1])
            multi = MultiComponent(combine='concat',
                                   components=[
                                       MockLoss(gan, sample=mock_sample),
                                       MockLoss(gan, sample=mock_sample)
                                   ])

            multi.proxy()
            self.assertEqual(multi.proxy_called, [True, True])
    def test_proxy_methods(self):
        with self.test_session():
            gan = mock_gan()
            mock_sample = tf.constant(1., shape=[1,1])
            multi = MultiComponent(combine='concat',
                components=[
                    MockLoss(gan, sample=mock_sample),
                    MockLoss(gan, sample=mock_sample)
            ])

            multi.proxy()
            self.assertEqual(multi.proxy_called, [True, True])
Beispiel #33
0
    def test_sample(self):
        with self.test_session():
            gan = mock_gan()
            mock_sample = tf.constant(1., shape=[1, 1])
            multi = MultiComponent(combine='concat',
                                   components=[
                                       MockLoss(gan, sample=mock_sample),
                                       MockLoss(gan, sample=mock_sample)
                                   ])

            gan.encoder = multi
            self.assertEqual(gan.ops.shape(multi.sample), [1, 2])
Beispiel #34
0
 def test_combine_dict(self):
     with self.test_session():
         gan = mock_gan()
         ops = gan.ops
         mock_sample = tf.constant(1., shape=[1])
         multi = MultiComponent(combine='add',
                                components=[
                                    MockLoss(gan, sample={"a": "b"}),
                                    MockLoss(gan, sample={"b": "c"})
                                ])
         self.assertEqual(len(multi.sample), 2)
         self.assertEqual(multi.sample['a'], 'b')
         self.assertEqual(multi.sample['b'], 'c')
 def test_sample_loss(self):
     with self.test_session():
         gan = mock_gan()
         ops = gan.ops
         mock_sample = tf.constant(1., shape=[1])
         multi = MultiComponent(combine='add',
             components=[
                 MockLoss(gan, sample=[mock_sample, None]),
                 MockLoss(gan, sample=[mock_sample, mock_sample])
         ])
         self.assertEqual(len(multi.sample), 2)
         self.assertEqual(ops.shape(multi.sample[0]), [1])
         self.assertEqual(ops.shape(multi.sample[1]), [1])
 def test_combine_dict(self):
     with self.test_session():
         gan = mock_gan()
         ops = gan.ops
         mock_sample = tf.constant(1., shape=[1])
         multi = MultiComponent(combine='add',
             components=[
                 MockLoss(gan, sample={"a":"b"}),
                 MockLoss(gan, sample={"b":"c"})
         ])
         self.assertEqual(len(multi.sample), 2)
         self.assertEqual(multi.sample['a'], 'b')
         self.assertEqual(multi.sample['b'], 'c')
Beispiel #37
0
 def test_sample(self):
     with self.test_session():
         gan = mock_gan()
         args = hc.Config({
             "size": "1",
             "steps": 1,
             "method": "train",
             "save_every": -1
         })
         gan.create()
         cli = hg.CLI(gan, args)
         cli.sample('/tmp/test-sample.png')
         self.assertEqual(cli.gan, gan)
Beispiel #38
0
 def test_adds_supervised_loss(self):
     with self.test_session():
         gan = mock_gan(y=2)
         args = hc.Config({
             "size": "1",
             "steps": 1,
             "method": "train",
             "save_every": -1,
             "classloss": True
         })
         cli = hg.CLI(gan, args)
         cli.add_supervised_loss()
         self.assertEqual(type(cli.gan.loss), MultiComponent)
         self.assertEqual(type(cli.gan.loss.components[0]), SupervisedLoss)
Beispiel #39
0
 def test_new(self):
     with self.test_session():
         try:
             os.remove('test.json')
         except Exception:
             pass
         gan = mock_gan()
         args = hc.Config({
             "size": "1",
             "steps": 1,
             "method": "train",
             "directory": "test"
         })
         cli = hg.CLI(gan, args)
         cli.new()
         self.assertTrue(os.path.isfile('test.json'))
Beispiel #40
0
 def test_sample_loss(self):
     with self.test_session():
         gan = mock_gan()
         ops = gan.ops
         mock_sample = tf.constant(1., shape=[1])
         multi = MultiComponent(combine='add',
                                components=[
                                    MockLoss(gan,
                                             sample=[mock_sample, None]),
                                    MockLoss(
                                        gan,
                                        sample=[mock_sample, mock_sample])
                                ])
         self.assertEqual(len(multi.sample), 2)
         self.assertEqual(ops.shape(multi.sample[0]), [1])
         self.assertEqual(ops.shape(multi.sample[1]), [1])
Beispiel #41
0
 def test_safe_new(self):
     with self.test_session():
         try:
             os.remove('test.json')
         except Exception:
             pass
         gan = mock_gan()
         args = hc.Config({
             "size": "1",
             "steps": 1,
             "method": "train",
             "directory": "test"
         })
         cli = hg.CLI(gan, args)
         cli.new()
         with self.assertRaises(ValidationException):
             cli.new()
    def test_config(self):
        with self.test_session():
            gan = mock_gan()

            sampler = BatchSampler(gan)
            self.assertEqual(sampler._sample()['generator'].shape[-1], 1)
Beispiel #43
0
 def test_config(self):
     with self.test_session():
         loss = LambGanLoss(mock_gan(), loss_config)
         self.assertTrue(loss.config.test)
 def test_create_component(self):
     with self.test_session():
         gan = mock_gan()
         distribution = gan.create_component(gan.config.latent)
         self.assertEqual(type(distribution), hg.distributions.uniform_distribution.UniformDistribution)
Beispiel #45
0
 def test_config(self):
     with self.test_session():
         loss = LeastSquaresLoss(mock_gan(), loss_config)
         self.assertTrue(loss.config.test)
 def test_config(self):
     with self.test_session():
         loss = BoundaryEquilibriumLoss(mock_gan(), loss_config)
         self.assertTrue(loss.config.test)
 def test_validate(self):
     with self.assertRaises(ValidationException):
         gan = mock_gan()
         AlternatingTrainer(gan, {})
 def test_config(self):
     with self.test_session():
         config = {'d_learn_rate': 1e-3, 'g_learn_rate': 1e-3, 'd_trainer': 'rmsprop', 'g_trainer': 'adam'}
         gan = mock_gan()
         trainer = AlternatingTrainer(gan, config)
         self.assertEqual(trainer.config.d_learn_rate, 1e-3)
Beispiel #49
0
 def test_hg_gan(self):
     self.assertIs(type(mock_gan()), hg.gans.standard_gan.StandardGAN)
 def test_config(self):
     with self.test_session():
         loss = SupervisedLoss(mock_gan(), loss_config)
         self.assertTrue(loss.config.test)
Beispiel #51
0
 def test_can_create_alphagan(self):
     config = hg.Configuration.load('alpha-default.json')
     self.assertIs(type(mock_gan(config=config)),
                   hg.gans.alpha_gan.AlphaGAN)
Beispiel #52
0
 def test_cli(self):
     with self.test_session():
         gan = mock_gan()
         args = {}
         cli = hg.CLI(gan, args)
         self.assertEqual(cli.gan, gan)
Beispiel #53
0
 def test_config(self):
     with self.test_session():
         return None # disable for now
         gan = mock_gan()
         discriminator = PyramidDiscriminator(gan, config)
         self.assertEqual(discriminator.config.activation, tf.nn.tanh)
Beispiel #54
0
 def test_can_create_default(self):
     config = hg.Configuration.load('default.json')
     self.assertIs(type(mock_gan(config=config)), hg.gans.standard_gan.StandardGAN)
 def test_config(self):
     with self.test_session():
         loss = LeastSquaresLoss(mock_gan(), loss_config)
         self.assertTrue(loss.config.test)