Beispiel #1
0
def test_local_csm_properties_csm():
    data = vector()
    indices, indptr, shape = (ivector(), ivector(), ivector())
    mode = get_default_mode()
    mode = mode.including("specialize", "local_csm_properties_csm")
    for CS, cast in [
        (sparse.CSC, sp.sparse.csc_matrix),
        (sparse.CSR, sp.sparse.csr_matrix),
    ]:
        f = aesara.function(
            [data, indices, indptr, shape],
            sparse.csm_properties(CS(data, indices, indptr, shape)),
            mode=mode,
        )
        assert not any(
            isinstance(node.op, (sparse.CSM, sparse.CSMProperties))
            for node in f.maker.fgraph.toposort())
        v = cast(random_lil((10, 40), config.floatX, 3))
        f(v.data, v.indices, v.indptr, v.shape)
Beispiel #2
0
def test_local_csm_grad_c():
    data = vector()
    indices, indptr, shape = (ivector(), ivector(), ivector())
    mode = get_default_mode()

    if aesara.config.mode == "FAST_COMPILE":
        mode = Mode(linker="c|py", optimizer="fast_compile")

    mode = mode.including("specialize", "local_csm_grad_c")
    for CS, cast in [
        (sparse.CSC, sp.sparse.csc_matrix),
        (sparse.CSR, sp.sparse.csr_matrix),
    ]:
        cost = aet_sum(sparse.DenseFromSparse()(CS(data, indices, indptr, shape)))
        f = aesara.function(
            [data, indices, indptr, shape], aesara.grad(cost, data), mode=mode
        )
        assert not any(
            isinstance(node.op, sparse.CSMGrad) for node in f.maker.fgraph.toposort()
        )
        v = cast(random_lil((10, 40), config.floatX, 3))
        f(v.data, v.indices, v.indptr, v.shape)