Beispiel #1
0
 def test_load_graph_model_with_fused_depthwise_prelu(self):
     """load_graph_model should split fused depthwise conv2d with prelu"""
     model_dir = testutils.get_path_to(testutils.DEPTHWISE_PRELU_PATH)
     graph = api.load_graph_model(model_dir)
     loaded_model = testutils.graph_to_model(graph)
     original_model_name = testutils.get_path_to(
         testutils.DEPTHWISE_PRELU_FILE)
     original_model = testutils.graph_to_model(original_model_name)
     # run both models and compare results
     x = _load_image(testutils.get_path_to('./data/human1.jpg'))
     y_from_loaded = _argmax(loaded_model(x))
     y_from_original = _argmax(original_model(x))
     # sanity check - should be reckognised as a human (class 1)
     self.assertEqual(y_from_original[0], 1)
     # same class
     self.assertEqual(y_from_loaded[0], y_from_original[0])
     # same confidence
     self.assertAlmostEqual(y_from_loaded[1], y_from_original[1], 4)
Beispiel #2
0
 def test_load_graph_model_with_simple_model(self):
     """load_graph_model should load simple model"""
     model_dir = testutils.get_path_to(testutils.SIMPLE_MODEL_PATH_NAME)
     graph = api.load_graph_model(model_dir)
     self.assertIsInstance(graph, tf.Graph)
     loaded_model = testutils.graph_to_model(graph)
     original_model_name = testutils.get_path_to(
         testutils.SIMPLE_MODEL_FILE_NAME)
     original_model = testutils.graph_to_model(original_model_name)
     # run both models and compare results
     x_ = 4
     x = tf.constant([[x_]], dtype=tf.float32)
     y_from_loaded_model = as_scalar(loaded_model(x))
     y_from_original_model = as_scalar(original_model(x))
     # sanity check; fails if model is different from the one we expected:
     # we want a model that predicts y = 5*x
     self.assertAlmostEqual(y_from_original_model, x_*5, places=1)
     # actual test
     self.assertAlmostEqual(y_from_loaded_model, y_from_original_model,
                            places=4)
Beispiel #3
0
 def test_load_graph_model_with_prelu(self):
     """load_graph_model should convert prelu operations"""
     model_dir = testutils.get_path_to(testutils.PRELU_MODEL_PATH)
     graph = api.load_graph_model(model_dir)
     loaded_model = testutils.graph_to_model(graph)
     original_model_name = testutils.get_path_to(testutils.PRELU_MODEL_FILE)
     original_model = testutils.graph_to_model(original_model_name)
     # run both models and compare results
     cx, cy, cz, r = -0.12, 0.2, 0.1, 0.314158
     px, py, pz = -0.4, 0.5, 0.4
     x = tf.constant([[cx, cy, cz, r, px, py, pz]], dtype=tf.float32)
     y_from_loaded_model = as_scalar(loaded_model(x))
     y_from_original_model = as_scalar(original_model(x))
     # sanity check; fails if model is different from the one we expected:
     # we want a model that predicts whether a point (px,py,pz) is inside
     # a sphere at (cx,cy,cz) of radius r
     self.assertAlmostEqual(y_from_original_model, 1, places=1)
     # actual test
     self.assertAlmostEqual(y_from_loaded_model,
                            y_from_original_model,
                            places=4)
Beispiel #4
0
 def test_rename_input_nodes(self):
     """rename_input_nodes should rename input nodes in-place"""
     model_file = testutils.get_path_to(testutils.SIMPLE_MODEL_FILE_NAME)
     graph_def = testutils.get_sample_graph_def(model_file)
     updated = util.rename_input_nodes(graph_def, {'x': 'scalar'})
     # update should be in-place
     self.assertEqual(graph_def, updated)
     # inputs should be renamed
     self.assertEqual(util.get_input_nodes(updated)[0].name, 'scalar')
     # model should still work
     model = testutils.graph_to_model(updated)
     s = 18
     scalar = tf.constant([[s]], dtype=tf.float32)
     result = model(scalar)
     value = result[0].numpy()
     # value = np.reshape(value, (1))
     y = value[0]
     self.assertAlmostEqual(y, s*5, delta=0.1)
Beispiel #5
0
 def test_rename_output_nodes_append_identity(self):
     """rename_output_nodes should work for outputs that aren't Identity"""
     model_file = testutils.get_path_to(testutils.SIMPLE_MODEL_FILE_NAME)
     graph_def = testutils.get_sample_graph_def(model_file)
     # some open-heart surgery on the model to remove the "Identity" output
     idx = [i for (i, n) in enumerate(graph_def.node) if n.op == 'Identity']
     del graph_def.node[idx[0]]
     output = util.get_output_nodes(graph_def)[0].name
     updated = util.rename_output_nodes(graph_def, {output: 'estimate'})
     # update should be in-place
     self.assertEqual(graph_def, updated)
     # outputs should be renamed
     self.assertEqual(util.get_output_nodes(updated)[0].name, 'estimate')
     # model should still work
     model = testutils.graph_to_model(updated)
     s = 18
     scalar = tf.constant([[s]], dtype=tf.float32)
     result = model(scalar)
     value = result[0].numpy()
     # value = np.reshape(value, (1))
     y = value[0]
     self.assertAlmostEqual(y, s*5, delta=0.1)