Beispiel #1
0
def test_replace_emojis():
    in_outs = [
        ("ugh, it's raining *again* ☔", "ugh, it's raining *again* _EMOJI_"),
        ("✌ tests are passing ✌", "_EMOJI_ tests are passing _EMOJI_"),
    ]
    for in_, out_ in in_outs:
        assert preprocessing.replace_emojis(in_) == out_
Beispiel #2
0
def preprocess_siamese(doc):

    # pre-process data
    doc = tp.normalize.normalize_unicode(doc)
    doc = tp.normalize_whitespace(doc)
    doc = tp.normalize_quotation_marks(doc)
    doc = tp.replace_emails(doc, replace_with="<EMAIL>")
    doc = tp.replace_urls(doc, replace_with="<URL>")
    doc = tp.replace_hashtags(doc, replace_with="<HASHTAG>")
    doc = tp.replace_emojis(doc, replace_with="<EMOJI>")
    doc = tp.replace_phone_numbers(doc, replace_with="<PHONE>")

    # apply spaCy to tokenize doc
    doc = nlp_token(doc)

    # build new sentences for pre-processed doc
    doc_new = []
    for sent in doc.sents:
        sent_new = ""
        for token in sent:
            token = token.text
            token = token.replace("\n", "")
            token = token.replace("\t", "")
            token = token.strip()
            sent_new += token + " "

        doc_new.append(sent_new[:-1])

    return doc_new
Beispiel #3
0
def cleanTweet(raw_data):
    data = [txt.replace_urls(x, "") for x in raw_data]
    data = [txt.replace_emails(x, "") for x in data]
    data = [txt.replace_emojis(x, "") for x in data]
    data = [txt.replace_user_handles(x, "") for x in data]
    data = [txt.replace_phone_numbers(x, "") for x in data]
    data = [txt.replace_numbers(x, "") for x in data]
    data = [txt.replace_currency_symbols(x, "") for x in data]
    data = [txt.replace_hashtags(x, "") for x in data]
    return data
Beispiel #4
0
def checkLenTweet(raw_data):
    data = txt.replace_urls(raw_data, "")
    data = txt.replace_emails(data, "")
    data = txt.replace_emojis(data, "")
    data = txt.replace_user_handles(data, "")
    data = txt.replace_phone_numbers(data, "")
    data = txt.replace_numbers(data, "")
    data = txt.replace_currency_symbols(data, "")
    data = txt.replace_hashtags(data, "")
    if len(data) < 28:  #Lunghezza media di un tweet
        return False
    else:
        return True
Beispiel #5
0
def preprocess_sentence(sent, lower=True):
    """Pre-process a sentence ( via ``textacy.preprocess` module ).

    Args:
        sent (str): text.
        lower (bool): whether to return a lowercase string.

    Returns:
        str
    """
    # normalize unicode
    sent = preprocessing.normalize_unicode(sent)

    # deaccent
    sent = preprocessing.remove_accents(sent)

    # replace newline chars
    sent = re.sub("\n|\r", " ", sent)

    # unpack contractions
    sent = contractions.fix(sent)

    # replace emoji symbols
    sent = preprocessing.replace_emojis(sent)

    # replace hashtags
    sent = preprocessing.replace_hashtags(sent)

    # replace user handles
    sent = preprocessing.replace_user_handles(sent)

    # replace currency symbols
    sent = preprocessing.replace_currency_symbols(sent)

    # replace emails
    sent = preprocessing.replace_emails(sent)

    # replace URLs
    sent = preprocessing.replace_urls(sent)

    # remove punctuation
    sent = preprocessing.remove_punctuation(sent)

    # normalize whitespace
    sent = preprocessing.normalize_whitespace(sent)

    if lower:
        sent = sent.lower()
    return sent
Beispiel #6
0
def textacy_preprocess(sentence):
    """Preprocess text."""
    sentence = preprocessing.normalize_hyphenated_words(sentence)
    sentence = preprocessing.normalize_quotation_marks(sentence)
    #sentence = preprocessing.normalize_repeating_chars(sentence)
    sentence = preprocessing.normalize_unicode(sentence)
    sentence = preprocessing.normalize_whitespace(sentence)
    sentence = preprocessing.remove_accents(sentence)
    sentence = preprocessing.remove_punctuation(sentence)
    sentence = preprocessing.replace_currency_symbols(sentence)
    sentence = preprocessing.replace_emails(sentence)
    sentence = preprocessing.replace_emojis(sentence)
    sentence = preprocessing.replace_hashtags(sentence)
    sentence = preprocessing.replace_numbers(sentence)
    sentence = preprocessing.replace_phone_numbers(sentence)
    sentence = preprocessing.replace_urls(sentence)
    sentence = preprocessing.replace_user_handles(sentence)

    return sentence
Beispiel #7
0
def preprocess_text(text,
                    char_count_filter=True,
                    stopwords=None,
                    min_len=2,
                    max_len=15):
    """
    Pre-processing steps prior to spaCy nlp pipeline. Optional filtering of
    tokens based on character length.

    Parameters
    ----------
    text : str
    char_count_filter : bool
    stopwords : iterable, None
    min_len : int
    max_len : int

    Returns
    -------
    text : str
        pre-processed text
    """
    # 1) convert to lower case for robust stop-word recognition
    text = text.lower()

    # 2) normalise
    text = preprocessing.normalize_quotation_marks(text)
    # text = preprocessing.normalize_repeating_chars(text)
    text = preprocessing.normalize_hyphenated_words(text)
    text = preprocessing.normalize_whitespace(text)

    # 3) replace
    text = preprocessing.replace_currency_symbols(text)
    text = preprocessing.replace_emails(text)
    text = preprocessing.replace_emojis(text)
    text = preprocessing.replace_hashtags(text)
    text = preprocessing.replace_numbers(text)
    text = preprocessing.replace_phone_numbers(text)
    text = preprocessing.replace_urls(text)
    text = preprocessing.replace_user_handles(text)

    # 4) remove
    text = preprocessing.remove_accents(text)
    text = preprocessing.remove_punctuation(text)
    text = re.sub("[^A-Za-z0-9]+", " ", text)  # keep text and numbers

    # 5) optionally remove tokens based on length
    if char_count_filter & (stopwords is not None):
        # filter based on token length
        tokens = gensim.utils.simple_preprocess(doc=text,
                                                min_len=min_len,
                                                max_len=max_len)
        # filter case-specific words
        tokens = [token for token in tokens if token not in stopwords]

        # convert processed list of tokens back to one string
        text = " ".join(tokens)
    else:
        raise NotImplementedError("Not implemented.")

    return text