Beispiel #1
0
def simpleCNN(IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS):
    """First version of simple CNN
    """
    from tf.keras.models import Sequential
    from tf.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization

    model = Sequential()

    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(
        IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS)))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(128, (3, 3), activation='relu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    # 2 because we have cat and dog classes
    model.add(Dense(2, activation='softmax'))

    return model
Beispiel #2
0
 def mlp_layer(self, lstm):
     fc = Dense(self.fc_args[0], activation='relu', kernel_initializer='truncated_normal')(lstm)
     fc = Dropout(self.dropout_args)(fc)
     fc = Dense(self.fc_args[1], activation='relu', kernel_initializer='truncated_normal')(fc)
     fc = Dropout(self.dropout_args)(fc)
     fc = Dense(self.fc_args[2], activation='relu', kernel_initializer='truncated_normal')(fc)
     fc = Dropout(self.dropout_args)(fc)
     fc = Dense(self.fc_args[3], activation='relu', kernel_initializer='truncated_normal')(fc)
     fc = Dropout(self.dropout_args)(fc)
     output = Dense(self.fc_args[4], activation='softmax', name='output')(fc)
     return output
Beispiel #3
0
    def _create_model_2(self, input_tensor, input_shape, num_classes,
                        dropout_rate):
        #input_tensor = Input(shape=input_shape)

        model = Sequential()
        model.add(
            Conv2D(32,
                   kernel_size=(5, 5),
                   padding='same',
                   activation='relu',
                   input_shape=input_shape[1:]))
        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

        model.add(
            Conv2D(64, kernel_size=(3, 3), padding='same', activation='relu'))
        model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

        model.add(Flatten())

        model.add(Dense(1024, activation='relu'))
        model.add(Dropout(dropout_rate))

        if 1 == num_classes:
            model.add(Dense(1, activation='sigmoid'))
            #model.add(Dense(1, activation='sigmoid', activity_regularizer=keras.regularizers.activity_l2(0.0001)))
        elif num_classes >= 2:
            model.add(Dense(num_classes, activation='softmax'))
            #model.add(Dense(num_classes, activation='softmax', activity_regularizer=keras.regularizers.activity_l2(0.0001)))
        else:
            assert num_classes > 0, 'Invalid number of classes.'

        # Display the model summary.
        #model.summary()

        return model(input_tensor)
Beispiel #4
0
    def _create_model_1(self, input_tensor, num_classes, dropout_rate):
        x = Conv2D(32, kernel_size=(5, 5), padding='same',
                   activation='relu')(input_tensor)
        x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)

        x = Conv2D(64, kernel_size=(3, 3), padding='same',
                   activation='relu')(x)
        x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)

        x = Flatten()(x)

        x = Dense(1024, activation='relu')(x)
        x = Dropout(dropout_rate)(x)

        if 1 == num_classes:
            x = Dense(1, activation='sigmoid')(x)
            #x = Dense(1, activation='sigmoid', activity_regularizer=keras.regularizers.activity_l2(0.0001))(x)
        elif num_classes >= 2:
            x = Dense(num_classes, activation='softmax')(x)
            #x = Dense(num_classes, activation='softmax', activity_regularizer=keras.regularizers.activity_l2(0.0001))(x)
        else:
            assert num_classes > 0, 'Invalid number of classes.'

        #model = Model(inputs=input_tensor, outputs=x)

        return x
Beispiel #5
0
 def feature_extractor_network(self):
     # input
     in_image = Input(shape = in_shape)
     # C1 Layer
     nett = Conv2D(32,(5,5))(in_image)		
     nett = BatchNormalization()(nett)
     nett = LeakyReLU(alpha = 0.2)(nett)
     # M2 Layer
     nett = MaxPooling2D(pool_size = (3,3))(nett)
     # C3 Layer
     nett = Conv2D(64,(3,3))		
     nett = BatchNormalization(pool_size = (3,3))(nett)
     nett = LeakyReLU(alpha = 0.2)(nett)
     # L4 Layer
     nett = LocallyConnected2D(128,(3,3))(nett)
     # L5 Layer
     nett = LocallyConnected2D(256,(3,3))(nett)
     # F6 Layer
     nett = Dense(512,activation='relu')(nett)
     nett = Dropout(0.2)(nett)
     # F7 Layer 
     out_features = Dense(activation='tanh')(nett)
     # output
     model = Model(inputs = in_image, outputs = out_features)
     return model
Beispiel #6
0
    def build_discriminator(self):

        model = Sequential()

        model.add(Dense(78, activation="relu", input_dim=self.input_shape))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(56, activation="relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(32, activation="relu"))
        model.add(Dropout(rate=0.3))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(28, activation="relu"))
        model.add(Dropuout(rate=0.3))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(10, activation="relu"))

        model.summary()

        img = Input(shape=self.img_shape)

        features = model(img)
        valid = Dense(1, activation="sigmoid")(features)
        label = Dense(self.num_classes + 1, activation="softmax")(features)

        return Model(img, [valid, label])
Beispiel #7
0
def vanilla_rnn(num_words,
                state,
                lra,
                dropout,
                num_outputs=2,
                emb_dim=50,
                input_length=500):
    model = Sequential()
    model.add(
        Embedding(input_dim=num_words + 1,
                  output_dim=emb_dim,
                  input_length=input_length,
                  trainable=False,
                  weights=[embed_matrix]))
    model.add(
        SimpleRNN(units=state,
                  input_shape=(num_words, 1),
                  return_sequences=False))
    model.add(Dropout(dropout))
    model.add(Dense(num_outputs, activation='sigmoid'))

    RMS = optimizers.RMSprop(lr=lra)
    model.compile(loss='binary_crossentropy',
                  optimizer=RMS,
                  metrics=['accuracy'])

    return model
Beispiel #8
0
def init_model():
    #K.clear_session()
    tf.reset_default_graph()

    model = Sequential()
    model.add(Conv2D(16, (3, 3), input_shape=(28, 28, 1), padding = "SAME", activation = "relu"))
    model.add(Conv2D(32, (3, 3), activation='relu'))
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))

    for layer in model.layers:
        print(layer.output_shape)
        
    model.compile(loss='sparse_categorical_crossentropy',
              optimizer=keras.optimizers.Adadelta(lr=0.1),
              metrics=['accuracy'])
              
    return model
Beispiel #9
0
 def discriminator_network(self):
     # input
     in_image = Input(shape=self.img_shape)
     # C1 layer
     nett = Conv2D(64,(5,5))(in_image)		
     nett = BatchNormalization()(nett)
     nett = LeakyReLU(alpha = 0.2)(nett)
     # C2 layer
     nett = Conv2D(128,(5,5))(nett)		
     nett = BatchNormalization()(nett)
     nett = LeakyReLU(alpha = 0.2)(nett)
     nett = Dropout(0.2)(nett)
     # C3 layer
     nett = Conv2D(256,(5,5))(nett)		
     nett = BatchNormalization()(nett)
     nett = LeakyReLU(alpha = 0.2)(nett)
     nett = Dropout(0.2)(nett)
     # F4 layer
     nett = Flatten()(nett)
     validity = Dense(1,alpha = 0.2)(nett)
     #output
     model =  Model(inputs = in_image, outputs = validity)
     return model
Beispiel #10
0
def simpleCNN_v2_AUC(input_shape):
    """Second version of simple CNN,
    added with 2 CNN layers and 1 FC layer.
    """
    from tf.keras.models import Sequential
    from tf.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization

    model = Sequential()

    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(128, (3, 3), activation='relu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    # 2 because we have cat and dog classes
    model.add(Dense(2, activation='softmax'))

    # AUC version
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam', metrics=['accuracy', auc])

    return model
def target_word_hidden(inputs, target_role, n_word_vocab, n_role_vocab, emb_init, 
    n_factors_cls=512, n_hidden=256, using_dropout=False, dropout_rate=0.3):
    """Hidden layer of non-incremental model role-filler to predict target word given context 
    (input words, input roles, target role).

    # Args:
        inputs:         output of context embedding from the last layer, shape is (batch_size, input_length)
        target_role:    place holder for target roles, shape is (batch_size, 1)
        n_word_vocab:   size of word vocabulary
        n_role_vocab:   size of role vocabulary
        emb_init:       initializer of embedding
        n_hidden:       number of hidden units
        using_dropout:      bool, using drop-out layer or not
        dropout_rate:       rate of drop-out layer        
    # Return:
        (n_factors_cls, )
    """
    
    # target role embedding; shape is (batch_size, 1, n_factors_cls)
    target_role_embedding = Embedding(n_role_vocab, n_factors_cls, 
        embeddings_initializer=emb_init, 
        name='target_role_embedding')(target_role)

    if using_dropout:
        # Drop-out layer after embeddings
        target_role_embedding = Dropout(dropout_rate)(target_role_embedding)

    # reduce dimension of tensor from 3 to 2
    target_role_embedding = Lambda(lambda x: K.sum(x, axis=1),
        output_shape=(n_factors_cls,))(target_role_embedding)
    
    # context_emb after linear projection
    weighted_context_embedding = Dense(n_factors_cls, # QUESTION: what's the point of the linear transformation? (team1-change)
        activation='linear', 
        use_bias=False,
        input_shape=(n_hidden, ))(inputs)

    # if using_dropout:
    #     # Drop-out layer after fully connected layer
    #    weighted_context_embedding = Dropout(0.5)(weighted_context_embedding)

    # hidden units after combining 2 embeddings; shape is the same with embedding
    hidden = Multiply()([weighted_context_embedding, target_role_embedding])

    return hidden
def target_role_hidden(inputs, target_word, n_word_vocab, n_role_vocab, emb_init, 
    n_factors_cls=512, n_hidden=256, using_dropout=False, dropout_rate=0.3):
    """Hidden layer of multi-task non-incremental model role-filler to predict target role given context 
    (input words, input roles, target word).

    # Args:
        context_emb:    output of context embedding from the last layer, shape is (batch_size, input_length)
        target_word:    place holder for target word, shape is (batch_size, 1)
        n_word_vocab:   size of word vocabulary
        n_role_vocab:   size of role vocabulary
        emb_init:       initializer of embedding
        n_hidden:       number of hidden units
    # Return:
        (n_factors_cls, )
    """
    
    # target role embedding; shape is (batch_size, 1, n_factors_emb)
    target_word_embedding = Embedding(n_word_vocab, n_factors_cls, 
        embeddings_initializer=emb_init, 
        name='target_word_embedding')(target_word)

    if using_dropout:
        target_word_embedding = Dropout(dropout_rate)(target_word_embedding)

    # reduce dimension of tensor from 3 to 2
    target_word_embedding = Lambda(lambda x: K.sum(x, axis=1),
        output_shape=(n_factors_cls,))(target_word_embedding)
    
    # context_emb after linear projection
    weighted_context_embedding = Dense(n_factors_cls, 
        activation='linear', 
        use_bias=False,        
        input_shape=(n_hidden, ))(inputs)

    # if using_dropout:
    #     weighted_context_embedding = Dropout(0.5)(weighted_context_embedding)

    # hidden units after combining 2 embeddings; shape is the same with embedding
    hidden = Multiply()([weighted_context_embedding, target_word_embedding])

    return hidden
class Classifier:
	def __init__(self, dense_classifier, embedding_dim, layers, dropout):
		self.model = self.build_dense_classifier(embedding_dim, layers, dropout) if dense_classifier else self.build_recurrent_classifier(embedding_dim, layers, dropout)
		self.batch_size = batch_size
		self.epochs = epochs
		self.validation_split = validation_split

	def build_dense_classifier(self, embedding_dim, layers, dropout):
		input1 = Input(shape=(embedding_dim*2,))

		h1 = Dense(layers[0], activation='relu')(input1)
			if dropout is not None:
				h1 = Dropout(rate=dropout)(h1)

		for layer in layers[1:]:
			h1 = Dense(layer, activation='relu')(h1)
			if dropout is not None:
				h1 = Dropout(rate=dropout)(h1)

		out = Dense(2, activation='softmax')(h1)
		model = Model(inputs=input1, outputs=out)

		return model
Beispiel #14
0
def factored_embedding(input_words,
                       input_roles,
                       n_word_vocab,
                       n_role_vocab,
                       emb_init,
                       missing_word_id,
                       input_length,
                       n_factors_emb=256,
                       n_hidden=256,
                       mask_zero=True,
                       using_dropout=False,
                       dropout_rate=0.3,
                       using_bias=False):
    """Role-based word embedding combining word and role embedding.

    # Arguments:
        input_words:        place holder for input words, shape is (batch_size, input_length)
        input_roles:        place holder for input roles, shape is (batch_size, input_length)
        n_word_vocab:       size of word vocabulary
        n_role_vocab:       size of role vocabulary
        emb_init:           initializer of embedding
        missing_word_id:    the id used as place-holder for the role without a word appearing
        n_factors_emb:      tensor factorization number, default: 256
        n_sample:           number of samples, useful when there are negative samples
        mask_zero:          bool, zero out the weight of missing word
        using_dropout:      bool, using drop-out layer or not
        dropout_rate:       rate of drop-out layer
    """

    # word embedding; shape is (batch_size, input_length, n_factors_emb)
    word_embedding = Embedding(n_word_vocab,
                               n_factors_emb,
                               embeddings_initializer=emb_init,
                               name='org_word_embedding')(input_words)

    if mask_zero:
        # a hack zeros out the missing word inputs
        weights = np.ones((n_word_vocab, n_factors_emb))
        weights[missing_word_id] = 0
        mask = Embedding(n_word_vocab,
                         n_factors_emb,
                         weights=[weights],
                         trainable=False,
                         name='mask_missing')(input_words)

        # masked word embedding
        word_embedding = Multiply(name='word_embedding')(
            [word_embedding, mask])

        # Alternative implementation, need missing_word_id == 0
        # self.word_embedding = Masking(mask_value=0.,
        #     input_shape=(input_length, n_factors_emb)(word_embedding)

    # role embedding; shape is (batch_size, input_length, n_factors_emb)
    role_embedding = Embedding(n_role_vocab,
                               n_factors_emb,
                               embeddings_initializer=emb_init,
                               name='role_embedding')(input_roles)

    if using_dropout:
        # Drop-out layer after embeddings
        word_embedding = Dropout(dropout_rate)(word_embedding)
        role_embedding = Dropout(dropout_rate)(role_embedding)

    # hidden units after combining 2 embeddings; shape is the same with embedding
    hidden = Multiply(name='multiply_composition')([
        word_embedding, role_embedding
    ])  # QUESTION: why multiply instead of concatenating? (team1-change)

    # fully connected layer, output shape is (batch_size, input_length, n_hidden)
    embedding = Dense(n_hidden,
                      activation='linear',
                      use_bias=using_bias,
                      input_shape=(n_factors_emb, ),
                      name='role_based_word_embedding')(hidden)

    return embedding
		model = Model(inputs=input1, outputs=out)

		return model


	def build_recurrent_classifier(self, embedding_dim, layers, dropout):
		input1 = Input(shape=(embedding_dim*2,))

		h1 = LSTM(layers[0], activation='tanh')(input1)
			if dropout is not None:
				h1 = Dropout(rate=dropout)(h1)

		for layer in layers[1:]:
			h1 = LSTM(layer, activation='tanh')(h1)
			if args.dropout is not None:
				h1 = Dropout(rate=dropout)(h1)

		h1 = Dense(layers[-1], activation='relu')(h1)
		out = Dense(2, activation='softmax')(h1)
		model = Model(inputs=input1, outputs=out)

		return model



	def train(self, filepath, patience=10, validation_split=.2, batch_size=120, epochs=250, train_data=None, test_data=None):

		train_embeddings, train_labels = train_data
		checkpointing = ModelCheckpoint(filepath, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')
		halting = EarlyStopping(monitor='val_loss', patience=patience, mode='auto', restore_best_weights=True)
		callbacks = [checkpointing, halting]
Beispiel #16
0
y_train = []
no_of_sample = len(training_set)

for i in range(60, no_of_sample):
    X_train.append(training_set_scaled[i - 60:i, 0])
    y_train.append(training_set_scaled[i, 0])

X_train, y_train = np.array(X_train), np.array(y_train)

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

# Xay dung model LSTM
regressor = Sequential()
regressor.add(
    LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units=50, return_sequences=True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units=50, return_sequences=True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units=50))
regressor.add(Dropout(0.2))
regressor.add(Dense(units=1))
regressor.compile(optimizer='adam', loss='mean_squared_error')

# Neu ton tai file model thi load
if path.exists("mymodel.h5"):
    regressor.load_weights("mymodel.h5")
else:
    # Con khong thi train
    regressor.fit(X_train, y_train, epochs=100, batch_size=32)
	def build_dense_classifier(self, embedding_dim, layers, dropout):
		input1 = Input(shape=(embedding_dim*2,))

		h1 = Dense(layers[0], activation='relu')(input1)
			if dropout is not None:
				h1 = Dropout(rate=dropout)(h1)
	def build_recurrent_classifier(self, embedding_dim, layers, dropout):
		input1 = Input(shape=(embedding_dim*2,))

		h1 = LSTM(layers[0], activation='tanh')(input1)
			if dropout is not None:
				h1 = Dropout(rate=dropout)(h1)