Beispiel #1
0
    def run_test_case(self, func, feed_dict, input_names_with_port, output_names_with_port, rtol=1e-07, atol=1e-5,
                      convert_var_to_const=True, constant_fold=True, check_value=True, check_shape=True,
                      check_dtype=True, process_args=None, onnx_feed_dict=None, graph_validator=None, as_session=False,
                      large_model=False, premade_placeholders=False):
        # optional - passed to process_tf_graph
        if process_args is None:
            process_args = {}
        # optional - pass distinct feed_dict to onnx runtime
        if onnx_feed_dict is None:
            onnx_feed_dict = feed_dict
        input_names_with_port = list(feed_dict)
        tf_reset_default_graph()
        graph_def = None
        initialized_tables = None

        np.random.seed(1)  # Make it reproducible.
        clean_feed_dict = {utils.node_name(k): v for k, v in feed_dict.items()}
        if is_tf2() and not as_session:
            #
            # use eager to execute the tensorflow func
            #
            # numpy doesn't work for all ops, make it tf.Tensor()
            input_tensors = [tf.TensorSpec(shape=v.shape, dtype=tf.as_dtype(v.dtype), name=utils.node_name(k))
                             for k, v in feed_dict.items()]
            input_list = [tf.convert_to_tensor(v, dtype=tf.as_dtype(v.dtype), name=utils.node_name(k))
                          for k, v in feed_dict.items()]
            tf.random.set_seed(1)
            expected = func(*input_list)
            if isinstance(expected, (list, tuple)):
                # list or tuple
                expected = [x.numpy() for x in expected]
            else:
                # single result
                expected = [expected.numpy()]

            # now make the eager functions a graph
            concrete_func = tf.function(func, input_signature=tuple(input_tensors))
            concrete_func = concrete_func.get_concrete_function()
            graph_def = from_function(concrete_func,
                                      input_names=list(feed_dict.keys()),
                                      output_names=output_names_with_port,
                                      large_model=large_model)
        else:
            #
            # use graph to execute the tensorflow func
            #
            with tf_session() as sess:
                tf_set_random_seed(1)
                input_list = []
                if not premade_placeholders:
                    for k, v in clean_feed_dict.items():
                        input_list.append(tf_placeholder(name=k, shape=v.shape, dtype=tf.as_dtype(v.dtype)))
                func(*input_list)
                variables_lib.global_variables_initializer().run()
                tf_tables_initializer().run()

                output_dict = []
                for out_name in output_names_with_port:
                    output_dict.append(sess.graph.get_tensor_by_name(out_name))
                expected = sess.run(output_dict, feed_dict=feed_dict)
                graph_def = freeze_session(sess,
                                           input_names=list(feed_dict.keys()),
                                           output_names=output_names_with_port)
                table_names, key_dtypes, value_dtypes = get_hash_table_info(graph_def)
                initialized_tables = {}
                for n, k_dtype, val_dtype in zip(table_names, key_dtypes, value_dtypes):
                    h = lookup_ops.hash_table_v2(k_dtype, val_dtype, shared_name=n)
                    k, v = lookup_ops.lookup_table_export_v2(h, k_dtype, val_dtype)
                    initialized_tables[n] = (sess.run(k), sess.run(v))

            tf_reset_default_graph()
            with tf_session() as sess:
                tf.import_graph_def(graph_def, name='')
                graph_def = tf_optimize(list(feed_dict.keys()), output_names_with_port,
                                        graph_def, fold_constant=constant_fold)

        tf_reset_default_graph()
        with tf_session() as sess:
            const_node_values = None
            if large_model:
                const_node_values = compress_graph_def(graph_def)
            tf.import_graph_def(graph_def, name='')

            if self.config.is_debug_mode:
                model_path = os.path.join(self.test_data_directory, self._testMethodName + "_after_tf_optimize.pb")
                utils.save_protobuf(model_path, graph_def)
                self.logger.debug("created file  %s", model_path)

            g = process_tf_graph(sess.graph, opset=self.config.opset,
                                 input_names=list(feed_dict.keys()),
                                 output_names=output_names_with_port,
                                 target=self.config.target,
                                 const_node_values=const_node_values,
                                 initialized_tables=initialized_tables,
                                 **process_args)
            g = optimizer.optimize_graph(g, catch_errors=False)
            actual = self.run_backend(g, output_names_with_port, onnx_feed_dict, large_model)

        for expected_val, actual_val in zip(expected, actual):
            if check_value:
                if expected_val.dtype == np.object:
                    decode = np.vectorize(lambda x: x.decode('UTF-8'))
                    expected_val_str = decode(expected_val)
                    self.assertAllEqual(expected_val_str, actual_val)
                else:
                    self.assertAllClose(expected_val, actual_val, rtol=rtol, atol=atol)
            if check_dtype:
                self.assertEqual(expected_val.dtype, actual_val.dtype)
            # why need shape checke: issue when compare [] with scalar
            # https://github.com/numpy/numpy/issues/11071
            if check_shape:
                self.assertEqual(expected_val.shape, actual_val.shape)

        if graph_validator:
            self.assertTrue(graph_validator(g))

        return g
    def freeze_and_run_tf(self, func, feed_dict, outputs, as_session,
                          premade_placeholders, large_model, constant_fold):
        np.random.seed(1)  # Make it reproducible.
        clean_feed_dict = {utils.node_name(k): v for k, v in feed_dict.items()}
        if is_tf2() and not as_session:
            #
            # use eager to execute the tensorflow func
            #
            # numpy doesn't work for all ops, make it tf.Tensor()
            input_tensors = [
                tf.TensorSpec(shape=v.shape,
                              dtype=tf.as_dtype(v.dtype),
                              name=utils.node_name(k))
                for k, v in feed_dict.items()
            ]
            input_list = [
                tf.convert_to_tensor(v,
                                     dtype=tf.as_dtype(v.dtype),
                                     name=utils.node_name(k))
                for k, v in feed_dict.items()
            ]
            tf.random.set_seed(1)
            result = func(*input_list)
            if isinstance(result, (list, tuple)):
                # list or tuple
                result = [x.numpy() for x in result]
            else:
                # single result
                result = [result.numpy()]

            # now make the eager functions a graph
            concrete_func = tf.function(func,
                                        input_signature=tuple(input_tensors))
            concrete_func = concrete_func.get_concrete_function()
            graph_def = from_function(concrete_func,
                                      input_names=list(feed_dict.keys()),
                                      output_names=outputs,
                                      large_model=large_model)
            initialized_tables = None
        else:
            #
            # use graph to execute the tensorflow func
            #
            with tf_session() as sess:
                tf_set_random_seed(1)
                input_list = []
                if not premade_placeholders:
                    for k, v in clean_feed_dict.items():
                        input_list.append(
                            tf_placeholder(name=k,
                                           shape=v.shape,
                                           dtype=tf.as_dtype(v.dtype)))
                func(*input_list)
                variables_lib.global_variables_initializer().run()
                tf_tables_initializer().run()

                output_dict = []
                for out_name in outputs:
                    output_dict.append(sess.graph.get_tensor_by_name(out_name))
                result = sess.run(output_dict, feed_dict=feed_dict)
                graph_def = freeze_session(sess,
                                           input_names=list(feed_dict.keys()),
                                           output_names=outputs)
                table_names, key_dtypes, value_dtypes = get_hash_table_info(
                    graph_def)
                initialized_tables = {}
                for n, k_dtype, val_dtype in zip(table_names, key_dtypes,
                                                 value_dtypes):
                    h = lookup_ops.hash_table_v2(k_dtype,
                                                 val_dtype,
                                                 shared_name=n)
                    k, v = lookup_ops.lookup_table_export_v2(
                        h, k_dtype, val_dtype)
                    initialized_tables[n] = (sess.run(k), sess.run(v))

            tf_reset_default_graph()
            with tf_session() as sess:
                tf.import_graph_def(graph_def, name='')
                graph_def = tf_optimize(list(feed_dict.keys()),
                                        outputs,
                                        graph_def,
                                        fold_constant=constant_fold)

        model_path = os.path.join(
            self.test_data_directory,
            self._testMethodName + "_after_tf_optimize.pb")
        utils.save_protobuf(model_path, graph_def)
        self.logger.debug("created file  %s", model_path)
        return result, graph_def, initialized_tables
    def freeze_and_run_tf(self, func, feed_dict, outputs, as_session,
                          premade_placeholders, large_model):
        np.random.seed(1)  # Make it reproducible.
        clean_feed_dict = {utils.node_name(k): v for k, v in feed_dict.items()}
        if is_tf2() and not as_session:
            #
            # use eager to execute the tensorflow func
            #
            # numpy doesn't work for all ops, make it tf.Tensor()
            input_tensors = [
                tf.TensorSpec(shape=v.shape,
                              dtype=tf.as_dtype(v.dtype),
                              name=utils.node_name(k))
                for k, v in feed_dict.items()
            ]
            input_list = [
                tf.convert_to_tensor(v,
                                     dtype=tf.as_dtype(v.dtype),
                                     name=utils.node_name(k))
                for k, v in feed_dict.items()
            ]
            tf.random.set_seed(1)
            result = func(*input_list)
            if isinstance(result, (list, tuple)):
                # list or tuple
                result = [x.numpy() for x in result]
            else:
                # single result
                result = [result.numpy()]

            # now make the eager functions a graph
            concrete_func = tf.function(func,
                                        input_signature=tuple(input_tensors))
            concrete_func = concrete_func.get_concrete_function()
            graph_def = from_function(concrete_func,
                                      input_names=list(feed_dict.keys()),
                                      output_names=outputs,
                                      large_model=large_model)
            initialized_tables = None
        else:
            #
            # use graph to execute the tensorflow func
            #
            with tf_session() as sess:
                tf_set_random_seed(1)
                input_list = []
                if not premade_placeholders:
                    for k, v in clean_feed_dict.items():
                        input_list.append(
                            tf_placeholder(name=k,
                                           shape=v.shape,
                                           dtype=tf.as_dtype(v.dtype)))
                func(*input_list)
                variables_lib.global_variables_initializer().run()
                tf_tables_initializer().run()

                output_dict = []
                for out_name in outputs:
                    output_dict.append(sess.graph.get_tensor_by_name(out_name))
                result = sess.run(output_dict, feed_dict=feed_dict)
                graph_def = freeze_session(sess,
                                           input_names=list(feed_dict.keys()),
                                           output_names=outputs)
                table_info = get_hash_table_info(graph_def)
                initialized_tables = {}
                for info in table_info:
                    if info.shared_name is None:
                        continue
                    h = lookup_ops.hash_table_v2(info.key_dtype,
                                                 info.val_dtype,
                                                 shared_name=info.shared_name)
                    k, v = lookup_ops.lookup_table_export_v2(
                        h, info.key_dtype, info.val_dtype)
                    initialized_tables[info.shared_name] = (sess.run(k),
                                                            sess.run(v))

            tf_reset_default_graph()
            with tf_session() as sess:
                tf.import_graph_def(graph_def, name='')
                graph_def = tf_optimize(list(feed_dict.keys()), outputs,
                                        graph_def)

        return result, graph_def, initialized_tables