def testBadMask(self):
   input_tensor = tf.reshape(tf.range(12, dtype=tf.float32), shape=[3, 4])
   mask = [[1, 0, 0, 1], [0, 0, 0, 0], [1, 0, 1, 1]]
   expected = [3, -1, 3]
   actual = self.evaluate(
       policy_utilities.masked_argmax(input_tensor, tf.constant(mask)))
   self.assertAllEqual(actual, expected)
    def _distribution(self, time_step, policy_state):
        if time_step.step_type.shape:
            if tf.is_tensor(time_step.step_type
                            ) and time_step.step_type.shape.rank > 0:
                batch_size = time_step.step_type.get_shape().as_list()[0]
            else:
                batch_size = 1
        else:
            batch_size = 1
        # Sample from the posterior distribution.
        posterior_dist = tfd.Beta(self._alpha, self._beta)
        predicted_reward_sampled = posterior_dist.sample([batch_size])
        predicted_reward_means_1d = tf.stack([
            self._alpha[k] / (self._alpha[k] + self._beta[k])
            for k in range(self._expected_num_actions)
        ],
                                             axis=-1)
        predicted_reward_means = tf.stack(
            [predicted_reward_means_1d for k in range(batch_size)], axis=0)

        mask = None
        if self._observation_and_action_constraint_splitter is not None:
            _, mask = self._observation_and_action_constraint_splitter(
                time_step.observation)

        # Argmax.
        if mask is not None:
            actions = policy_utilities.masked_argmax(
                predicted_reward_sampled,
                mask,
                output_type=self.action_spec.dtype)
        else:
            actions = tf.argmax(predicted_reward_sampled,
                                axis=-1,
                                output_type=self.action_spec.dtype)

        policy_info = policy_utilities.populate_policy_info(
            arm_observations=(),
            chosen_actions=actions,
            rewards_for_argmax=tf.cast(predicted_reward_sampled, tf.float32),
            est_rewards=tf.cast(predicted_reward_means, tf.float32),
            emit_policy_info=self._emit_policy_info,
            accepts_per_arm_features=False)
        if policy_utilities.InfoFields.LOG_PROBABILITY in self._emit_policy_info:
            policy_info._replace(
                log_probability=tf.zeros([batch_size], tf.float32))

        return policy_step.PolicyStep(
            tfp.distributions.Deterministic(loc=actions), policy_state,
            policy_info)
Beispiel #3
0
    def _get_actions_from_linucb(
        self, encoded_observation: types.Float, mask: Optional[types.Tensor]
    ) -> Tuple[types.Int, types.Float, types.Float]:
        encoded_observation = tf.cast(encoded_observation, dtype=self._dtype)

        p_values = []
        est_rewards = []
        for k in range(self._num_actions):
            encoded_observation_for_arm = self._get_encoded_observation_for_arm(
                encoded_observation, k)
            model_index = policy_utilities.get_model_index(
                k, self._accepts_per_arm_features)
            a_inv_x = linalg.conjugate_gradient_solve(
                self._cov_matrix[model_index] +
                tf.eye(self._encoding_dim, dtype=self._dtype),
                tf.linalg.matrix_transpose(encoded_observation_for_arm))
            mean_reward_est = tf.einsum('j,jk->k',
                                        self._data_vector[model_index],
                                        a_inv_x)
            est_rewards.append(mean_reward_est)

            ci = tf.reshape(
                tf.linalg.tensor_diag_part(
                    tf.matmul(encoded_observation_for_arm, a_inv_x)), [-1, 1])
            p_values.append(
                tf.reshape(mean_reward_est, [-1, 1]) +
                self._alpha * tf.sqrt(ci))

        stacked_p_values = tf.squeeze(tf.stack(p_values, axis=-1), axis=[1])
        if mask is None:
            chosen_actions = tf.argmax(stacked_p_values,
                                       axis=-1,
                                       output_type=tf.int32)
        else:
            chosen_actions = policy_utilities.masked_argmax(
                stacked_p_values, mask, output_type=tf.int32)

        est_mean_reward = tf.cast(tf.stack(est_rewards, axis=-1), tf.float32)
        return chosen_actions, est_mean_reward, tf.cast(
            stacked_p_values, tf.float32)
Beispiel #4
0
    def _get_actions_from_reward_layer(
        self, encoded_observation: types.Float, mask: Optional[types.Tensor]
    ) -> Tuple[types.Int, types.Float, types.Float]:
        # Get the predicted expected reward.
        est_mean_reward = tf.reshape(self._reward_layer(encoded_observation),
                                     shape=[-1, self._num_actions])
        if mask is None:
            greedy_actions = tf.argmax(est_mean_reward,
                                       axis=-1,
                                       output_type=tf.int32)
        else:
            greedy_actions = policy_utilities.masked_argmax(
                est_mean_reward, mask, output_type=tf.int32)

        # Add epsilon greedy on top, if needed.
        if self._epsilon_greedy:
            batch_size = (tf.compat.dimension_value(
                encoded_observation.shape[0])
                          or tf.shape(encoded_observation)[0])
            if mask is None:
                random_actions = tf.random.uniform([batch_size],
                                                   maxval=self._num_actions,
                                                   dtype=tf.int32)
            else:
                zero_logits = tf.cast(tf.zeros_like(mask), tf.float32)
                masked_categorical = masked.MaskedCategorical(zero_logits,
                                                              mask,
                                                              dtype=tf.int32)
                random_actions = masked_categorical.sample()

            rng = tf.random.uniform([batch_size], maxval=1.0)
            cond = tf.greater(rng, self._epsilon_greedy)
            chosen_actions = tf.compat.v1.where(cond, greedy_actions,
                                                random_actions)
        else:
            chosen_actions = greedy_actions

        return chosen_actions, est_mean_reward, est_mean_reward
 def testMaskedArgmax(self, input_tensor, mask, expected):
   actual = policy_utilities.masked_argmax(
       tf.constant(input_tensor, dtype=tf.float32), tf.constant(mask))
   self.assertAllEqual(actual, expected)
    def _distribution(self, time_step, policy_state):
        observation = time_step.observation
        if self.observation_and_action_constraint_splitter is not None:
            observation, _ = self.observation_and_action_constraint_splitter(
                observation)
        observation = tf.nest.map_structure(
            lambda o: tf.cast(o, dtype=self._dtype), observation)
        global_observation, arm_observations = self._split_observation(
            observation)

        if self._add_bias:
            # The bias is added via a constant 1 feature.
            global_observation = tf.concat([
                global_observation,
                tf.ones([tf.shape(global_observation)[0], 1],
                        dtype=self._dtype)
            ],
                                           axis=1)
        # Check the shape of the observation matrix. The observations can be
        # batched.
        if not global_observation.shape.is_compatible_with(
            [None, self._global_context_dim]):
            raise ValueError(
                'Global observation shape is expected to be {}. Got {}.'.
                format([None, self._global_context_dim],
                       global_observation.shape.as_list()))
        global_observation = tf.reshape(global_observation,
                                        [-1, self._global_context_dim])

        est_rewards = []
        confidence_intervals = []
        for k in range(self._num_actions):
            current_observation = self._get_current_observation(
                global_observation, arm_observations, k)
            model_index = policy_utilities.get_model_index(
                k, self._accepts_per_arm_features)
            if self._use_eigendecomp:
                q_t_b = tf.matmul(
                    self._eig_matrix[model_index],
                    tf.linalg.matrix_transpose(current_observation),
                    transpose_a=True)
                lambda_inv = tf.divide(
                    tf.ones_like(self._eig_vals[model_index]),
                    self._eig_vals[model_index] + self._tikhonov_weight)
                a_inv_x = tf.matmul(self._eig_matrix[model_index],
                                    tf.einsum('j,jk->jk', lambda_inv, q_t_b))
            else:
                a_inv_x = linalg.conjugate_gradient(
                    self._cov_matrix[model_index] + self._tikhonov_weight *
                    tf.eye(self._overall_context_dim, dtype=self._dtype),
                    tf.linalg.matrix_transpose(current_observation))
            est_mean_reward = tf.einsum('j,jk->k',
                                        self._data_vector[model_index],
                                        a_inv_x)
            est_rewards.append(est_mean_reward)

            ci = tf.reshape(
                tf.linalg.tensor_diag_part(
                    tf.matmul(current_observation, a_inv_x)), [-1, 1])
            confidence_intervals.append(ci)

        if self._exploration_strategy == ExplorationStrategy.optimistic:
            optimistic_estimates = [
                tf.reshape(mean_reward, [-1, 1]) +
                self._alpha * tf.sqrt(confidence)
                for mean_reward, confidence in zip(est_rewards,
                                                   confidence_intervals)
            ]
            # Keeping the batch dimension during the squeeze, even if batch_size == 1.
            rewards_for_argmax = tf.squeeze(tf.stack(optimistic_estimates,
                                                     axis=-1),
                                            axis=[1])
        elif self._exploration_strategy == ExplorationStrategy.sampling:
            mu_sampler = tfd.Normal(
                loc=tf.stack(est_rewards, axis=-1),
                scale=self._alpha * tf.sqrt(
                    tf.squeeze(tf.stack(confidence_intervals, axis=-1),
                               axis=1)))
            rewards_for_argmax = mu_sampler.sample()
        else:
            raise ValueError('Exploraton strategy %s not implemented.' %
                             self._exploration_strategy)

        mask = constraints.construct_mask_from_multiple_sources(
            time_step.observation,
            self._observation_and_action_constraint_splitter, (),
            self._num_actions)
        if mask is not None:
            chosen_actions = policy_utilities.masked_argmax(
                rewards_for_argmax,
                mask,
                output_type=tf.nest.flatten(self._action_spec)[0].dtype)
        else:
            chosen_actions = tf.argmax(rewards_for_argmax,
                                       axis=-1,
                                       output_type=tf.nest.flatten(
                                           self._action_spec)[0].dtype)

        action_distributions = tfp.distributions.Deterministic(
            loc=chosen_actions)

        policy_info = policy_utilities.populate_policy_info(
            arm_observations, chosen_actions, rewards_for_argmax,
            tf.stack(est_rewards, axis=-1), self._emit_policy_info,
            self._accepts_per_arm_features)

        return policy_step.PolicyStep(action_distributions, policy_state,
                                      policy_info)
Beispiel #7
0
  def _distribution(self, time_step, policy_state):
    observation = time_step.observation
    if self.observation_and_action_constraint_splitter is not None:
      observation, _ = self.observation_and_action_constraint_splitter(
          observation)

    predictions, policy_state = self._reward_network(
        observation, time_step.step_type, policy_state)
    batch_size = tf.shape(predictions)[0]

    if isinstance(self._reward_network,
                  heteroscedastic_q_network.HeteroscedasticQNetwork):
      predicted_reward_values = predictions.q_value_logits
    else:
      predicted_reward_values = predictions

    predicted_reward_values.shape.with_rank_at_least(2)
    predicted_reward_values.shape.with_rank_at_most(3)
    if predicted_reward_values.shape[
        -1] is not None and predicted_reward_values.shape[
            -1] != self._expected_num_actions:
      raise ValueError(
          'The number of actions ({}) does not match the reward_network output'
          ' size ({}).'.format(self._expected_num_actions,
                               predicted_reward_values.shape[1]))

    mask = constr.construct_mask_from_multiple_sources(
        time_step.observation, self._observation_and_action_constraint_splitter,
        self._constraints, self._expected_num_actions)

    # Argmax.
    if mask is not None:
      actions = policy_utilities.masked_argmax(
          predicted_reward_values, mask, output_type=self.action_spec.dtype)
    else:
      actions = tf.argmax(
          predicted_reward_values, axis=-1, output_type=self.action_spec.dtype)

    actions += self._action_offset

    bandit_policy_values = tf.fill([batch_size, 1],
                                   policy_utilities.BanditPolicyType.GREEDY)

    if self._accepts_per_arm_features:
      # Saving the features for the chosen action to the policy_info.
      def gather_observation(obs):
        return tf.gather(params=obs, indices=actions, batch_dims=1)

      chosen_arm_features = tf.nest.map_structure(
          gather_observation,
          observation[bandit_spec_utils.PER_ARM_FEATURE_KEY])
      policy_info = policy_utilities.PerArmPolicyInfo(
          log_probability=tf.zeros([batch_size], tf.float32) if
          policy_utilities.InfoFields.LOG_PROBABILITY in self._emit_policy_info
          else (),
          predicted_rewards_mean=(
              predicted_reward_values if policy_utilities.InfoFields
              .PREDICTED_REWARDS_MEAN in self._emit_policy_info else ()),
          bandit_policy_type=(bandit_policy_values
                              if policy_utilities.InfoFields.BANDIT_POLICY_TYPE
                              in self._emit_policy_info else ()),
          chosen_arm_features=chosen_arm_features)
    else:
      policy_info = policy_utilities.PolicyInfo(
          log_probability=tf.zeros([batch_size], tf.float32) if
          policy_utilities.InfoFields.LOG_PROBABILITY in self._emit_policy_info
          else (),
          predicted_rewards_mean=(
              predicted_reward_values if policy_utilities.InfoFields
              .PREDICTED_REWARDS_MEAN in self._emit_policy_info else ()),
          bandit_policy_type=(bandit_policy_values
                              if policy_utilities.InfoFields.BANDIT_POLICY_TYPE
                              in self._emit_policy_info else ()))

    return policy_step.PolicyStep(
        tfp.distributions.Deterministic(loc=actions), policy_state, policy_info)
    def _distribution(
            self, time_step: ts.TimeStep,
            policy_state: Sequence[types.TensorSpec]
    ) -> policy_step.PolicyStep:
        observation = time_step.observation
        if self.observation_and_action_constraint_splitter is not None:
            observation, _ = self.observation_and_action_constraint_splitter(
                observation)
        predicted_objective_values_tensor, policy_state = self._predict(
            observation, time_step.step_type, policy_state)
        scalarized_reward = scalarize_objectives(
            predicted_objective_values_tensor, self._scalarizer)
        # Preserve static batch size values when they are available.
        batch_size = (tf.compat.dimension_value(scalarized_reward.shape[0])
                      or tf.shape(scalarized_reward)[0])
        mask = constraints.construct_mask_from_multiple_sources(
            time_step.observation,
            self._observation_and_action_constraint_splitter, (),
            self._expected_num_actions)

        # Argmax.
        if mask is not None:
            actions = policy_utilities.masked_argmax(
                scalarized_reward, mask, output_type=self.action_spec.dtype)
        else:
            actions = tf.argmax(scalarized_reward,
                                axis=-1,
                                output_type=self.action_spec.dtype)

        actions += self._action_offset

        bandit_policy_values = tf.fill(
            [batch_size, 1], policy_utilities.BanditPolicyType.GREEDY)

        if self._accepts_per_arm_features:
            # Saving the features for the chosen action to the policy_info.
            def gather_observation(obs):
                return tf.gather(params=obs, indices=actions, batch_dims=1)

            chosen_arm_features = tf.nest.map_structure(
                gather_observation,
                observation[bandit_spec_utils.PER_ARM_FEATURE_KEY])
            policy_info = policy_utilities.PerArmPolicyInfo(
                log_probability=tf.zeros([batch_size], tf.float32)
                if policy_utilities.InfoFields.LOG_PROBABILITY
                in self._emit_policy_info else (),
                predicted_rewards_mean=(
                    predicted_objective_values_tensor
                    if policy_utilities.InfoFields.PREDICTED_REWARDS_MEAN
                    in self._emit_policy_info else ()),
                multiobjective_scalarized_predicted_rewards_mean=(
                    scalarized_reward if policy_utilities.InfoFields.
                    MULTIOBJECTIVE_SCALARIZED_PREDICTED_REWARDS_MEAN
                    in self._emit_policy_info else ()),
                bandit_policy_type=(
                    bandit_policy_values
                    if policy_utilities.InfoFields.BANDIT_POLICY_TYPE
                    in self._emit_policy_info else ()),
                chosen_arm_features=chosen_arm_features)
        else:
            policy_info = policy_utilities.PolicyInfo(
                log_probability=tf.zeros([batch_size], tf.float32)
                if policy_utilities.InfoFields.LOG_PROBABILITY
                in self._emit_policy_info else (),
                predicted_rewards_mean=(
                    predicted_objective_values_tensor
                    if policy_utilities.InfoFields.PREDICTED_REWARDS_MEAN
                    in self._emit_policy_info else ()),
                multiobjective_scalarized_predicted_rewards_mean=(
                    scalarized_reward if policy_utilities.InfoFields.
                    MULTIOBJECTIVE_SCALARIZED_PREDICTED_REWARDS_MEAN
                    in self._emit_policy_info else ()),
                bandit_policy_type=(
                    bandit_policy_values
                    if policy_utilities.InfoFields.BANDIT_POLICY_TYPE
                    in self._emit_policy_info else ()))

        return policy_step.PolicyStep(
            tfp.distributions.Deterministic(loc=actions), policy_state,
            policy_info)