Beispiel #1
0
 def call(self, inputs):
     batch_size = tf.shape(inputs)[0]
     neighbors = euler_ops.sample_neighbor(
         inputs, self.edge_type, self.nb_num)[0]
     node_feats = euler_ops.get_dense_feature(
         tf.reshape(inputs, [-1]),
         [self.feature_idx],
         [self.feature_dim])[0]
     neighbor_feats = euler_ops.get_dense_feature(
         tf.reshape(neighbors, [-1]),
         [self.feature_idx],
         [self.feature_dim])[0]
     node_feats = tf.reshape(node_feats, [batch_size, 1, self.feature_dim])
     neighbor_feats = tf.reshape(
         neighbor_feats, [batch_size, self.nb_num, self.feature_dim])
     nbs = tf.concat([node_feats, neighbor_feats], 1)
     topk, _ = tf.nn.top_k(tf.transpose(neighbor_feats, [0, 2, 1]),
                           k=self.k)
     topk = tf.transpose(topk, [0, 2, 1])
     topk = tf.concat([node_feats, topk], 1)
     hidden = tf.layers.conv1d(topk,
                               self.hidden_dim,
                               self.k // 2 + 1, use_bias=True)
     out = tf.layers.conv1d(hidden,
                            self.out_dim,
                            self.k // 2 + 1, use_bias=True)
     out = tf.slice(out, [0, 0, 0], [batch_size, 1, self.out_dim])
     return tf.reshape(out, [batch_size, self.out_dim])
Beispiel #2
0
    def call(self, inputs):
        batch_size = inputs.shape[0]
        neighbors = euler_ops.sample_neighbor(inputs, [self.edge_type],
                                              self.nb_num)[0]
        node_feats = euler_ops.get_dense_feature(tf.reshape(inputs, [-1]),
                                                 [self.feature_idx],
                                                 [self.feature_dim])[0]
        neighbor_feats = euler_ops.get_dense_feature(
            tf.reshape(neighbors, [-1]), [self.feature_idx],
            [self.feature_dim])[0]
        node_feats = tf.reshape(node_feats, [batch_size, 1, self.feature_dim])
        neighbor_feats = tf.reshape(
            neighbor_feats, [batch_size, self.nb_num, self.feature_dim])
        seq = tf.concat([node_feats, neighbor_feats], 1)  #[bz,nb+1,fdim]

        hidden = []
        for i in range(0, self.head_num):
            #hidden_val = self.att_head_v2(tf.reshape(inputs,[batch_size,1]),neighbors)
            hidden_val = self.att_head(seq, self.hidden_dim, tf.nn.elu)
            print('hidden shape', hidden_val.shape)
            hidden_val = tf.reshape(
                hidden_val, [batch_size, self.nb_num + 1, self.hidden_dim])
            hidden.append(hidden_val)
        h_1 = tf.concat(hidden, -1)
        out = []
        for i in range(0, self.head_num):
            out_val = self.att_head(h_1, self.out_dim, tf.nn.elu)
            out_val = tf.reshape(out_val,
                                 [batch_size, self.nb_num + 1, self.out_dim])
            out.append(out_val)
        out = tf.add_n(out) / self.head_num
        out = tf.reshape(out, [batch_size, self.nb_num + 1, self.out_dim])
        out = tf.slice(out, [0, 0, 0], [batch_size, 1, self.out_dim])
        print('out shape', out.shape)
        return tf.reshape(out, [batch_size, self.out_dim])
Beispiel #3
0
 def call(self, inputs):
     embeddings = []
     if self.use_id:
         embeddings.append(self.embedding(inputs))
     if self.use_feature:
         feature = euler_ops.get_dense_feature(inputs, [self.feature_idx],
                                               [self.feature_dim])[0]
         embeddings.append(self.dense(feature))
     return tf.add_n(embeddings)
Beispiel #4
0
    def node_encoder(self, inputs):
        if self.use_id:
            id_embedding = self.embedding(inputs)
        if not self.use_feature:
            return id_embedding

        feature = euler_ops.get_dense_feature(inputs, [self.feature_idx],
                                              [self.feature_dim])[0]
        if self.use_id:
            feature = tf.concat([feature, id_embedding], 1)
        return feature
Beispiel #5
0
    def call(self, inputs):
        labels = euler_ops.get_dense_feature(inputs, [self.label_idx],
                                             [self.label_dim])[0]
        if self.label_dim == 1:
            labels = tf.one_hot(tf.to_int64(tf.squeeze(labels)),
                                self.num_classes)

        embedding = self.encoder(inputs)
        predictions, loss = self.decoder(embedding, labels)
        f1 = metrics.f1_score(labels, predictions, name='f1')

        return ModelOutput(embedding=embedding,
                           loss=loss,
                           metric_name='f1',
                           metric=f1)
Beispiel #6
0
    def node_encoder(self, inputs):
        embeddings = []

        if self.use_id:
            embeddings.append(self.id_layer(inputs))

        if self.use_feature:
            from_feature = euler_ops.get_dense_feature(inputs,
                                                       [self.feature_idx],
                                                       [self.feature_dim])[0]
            if self.use_residual:
                from_feature = self.feature_layer(from_feature)
            embeddings.append(from_feature)

        if self.use_residual:
            return tf.add_n(embeddings)
        else:
            return tf.concat(embeddings, 1)
Beispiel #7
0
    def call(self, inputs):
        input_shape = inputs.shape
        inputs = tf.reshape(inputs, [-1])
        embeddings = []

        if self.use_id:
            embeddings.append(self.embedding(inputs))

        if self.use_feature:
            features = euler_ops.get_dense_feature(inputs, self.feature_idx,
                                                   self.feature_dim)
            features = tf.concat(features, -1)
            if self.combiner == 'add':
                features = self.dense(features)
            embeddings.append(features)

        if self.use_sparse_feature:
            default_values = [
                max_id + 1 for max_id in self.sparse_feature_max_id
            ]
            sparse_features = euler_ops.get_sparse_feature(
                inputs, self.sparse_feature_idx, default_values=default_values)
            embeddings.extend([
                sparse_embedding(sparse_feature)
                for sparse_embedding, sparse_feature in zip(
                    self.sparse_embeddings, sparse_features)
            ])

        if self.combiner == 'add':
            embedding = tf.add_n(embeddings)
        else:
            embedding = tf.concat(embeddings, -1)
            if self.dim:
                embedding = self.dense(embedding)
        output_shape = input_shape.concatenate(self.output_dim)
        output_shape = [
            d if d is not None else -1 for d in output_shape.as_list()
        ]
        return tf.reshape(embedding, output_shape)