Beispiel #1
0
def tf_ssd_bboxes_select_layer_all_classes(predictions_layer, localizations_layer, select_threshold=None):
    """Extract classes, scores and bounding boxes from features in one layer.
     Batch-compatible: inputs are supposed to have batch-type shapes.

     Args:
       predictions_layer: A SSD prediction layer;
       localizations_layer: A SSD localization layer;
      select_threshold: Classification threshold for selecting a box. If None,
        select boxes whose classification score is higher than 'no class'.
     Return:
      classes, scores, bboxes: Input Tensors.
     """
    # Reshape features: Batches x N x N_labels | 4
    p_shape = tfe.get_shape(predictions_layer)
    predictions_layer = tf.reshape(predictions_layer, tf.stack([p_shape[0], -1, p_shape[-1]]))
    l_shape = tfe.get_shape(localizations_layer)
    localizations_layer = tf.reshape(localizations_layer, tf.stack([l_shape[0], -1, l_shape[-1]]))
    # Boxes selection: use threshold or score > no-label criteria.
    if select_threshold is None or select_threshold == 0:
        # Class prediction and scores: assign 0. to 0-class
        classes = tf.argmax(predictions_layer, axis=2)
        scores = tf.reduce_max(predictions_layer, axis=2)
        scores = scores * tf.cast(classes > 0, scores.dtype)
    else:
        sub_predictions = predictions_layer[:, :, 1:]
        classes = tf.argmax(sub_predictions, axis=2) + 1
        scores = tf.reduce_max(sub_predictions, axis=2)
        # Only keep predictions higher than threshold.
        mask = tf.greater(scores, select_threshold)
        classes = classes * tf.cast(mask, classes.dtype)
        scores = scores * tf.cast(mask, scores.dtype)
    # Assume localization layer already decoded.
    bboxes = localizations_layer
    return classes, scores, bboxes
def tf_ssd_bboxes_select_layer(predictions_layer,
                               localizations_layer,
                               select_threshold=None,
                               num_classes=21,
                               ignore_class=0,
                               scope=None):
    """Extract classes, scores and bounding boxes from features in one layer.
    Batch-compatible: inputs are supposed to have batch-type shapes.
    Args:
      predictions_layer: A SSD prediction layer;
      localizations_layer: A SSD localization layer;
      select_threshold: Classification threshold for selecting a box. All boxes
        under the threshold are set to 'zero'. If None, no threshold applied.
    Return:
      d_scores, d_bboxes: Dictionary of scores and bboxes Tensors of
        size Batches X N x 1 | 4. Each key corresponding to a class.
    """
    select_threshold = 0.0 if select_threshold is None else select_threshold
    with tf.name_scope(scope, 'ssd_bboxes_select_layer',
                       [predictions_layer, localizations_layer]):
        # Reshape features: Batches x N x N_labels | 4
        p_shape = tfe.get_shape(predictions_layer)
        predictions_layer = tf.reshape(predictions_layer,
                                       tf.stack([p_shape[0], -1, p_shape[-1]]))
        l_shape = tfe.get_shape(localizations_layer)
        localizations_layer = tf.reshape(
            localizations_layer, tf.stack([l_shape[0], -1, l_shape[-1]]))

        d_scores = {}
        d_bboxes = {}
        for c in range(0, num_classes):
            if c != ignore_class:
                # Remove boxes under the threshold.
                scores = predictions_layer[:, :, c]
                fmask = tf.cast(tf.greater_equal(scores, select_threshold),
                                scores.dtype)
                scores = scores * fmask
                bboxes = localizations_layer * tf.expand_dims(fmask, axis=-1)
                # Append to dictionary.
                d_scores[c] = scores
                d_bboxes[c] = bboxes

                pass
            pass
        return d_scores, d_bboxes
    pass
Beispiel #3
0
def ssd_losses(logits,
               localisations,
               gclasses,
               glocalisations,
               gscores,
               match_threshold=0.5,
               negative_ratio=3.,
               alpha=1.,
               label_smoothing=0.,
               scope=None):
    with tf.name_scope(scope, 'ssd_losses'):
        lshape = tfe.get_shape(logits[0], 5)
        num_classes = lshape[-1]
        batch_size = lshape[0]

        # Flatten out all vectors!
        flogits = []
        fgclasses = []
        fgscores = []
        flocalisations = []
        fglocalisations = []
        for i in range(len(logits)):
            flogits.append(tf.reshape(logits[i], [-1, num_classes]))
            fgclasses.append(tf.reshape(gclasses[i], [-1]))
            fgscores.append(tf.reshape(gscores[i], [-1]))
            flocalisations.append(tf.reshape(localisations[i], [-1, 4]))
            fglocalisations.append(tf.reshape(glocalisations[i], [-1, 4]))
        # And concat the crap!
        logits = tf.concat(flogits, axis=0)
        gclasses = tf.concat(fgclasses, axis=0)
        gscores = tf.concat(fgscores, axis=0)
        localisations = tf.concat(flocalisations, axis=0)
        glocalisations = tf.concat(fglocalisations, axis=0)
        dtype = logits.dtype

        # Compute positive matching mask... 正样本
        pmask = gscores > match_threshold
        fpmask = tf.cast(pmask, dtype)
        n_positives = tf.reduce_sum(fpmask)

        # Hard negative mining...
        no_classes = tf.cast(pmask, tf.int32)
        predictions = slim.softmax(logits)
        nmask = tf.logical_and(tf.logical_not(pmask),
                               gscores > -0.5)  # 这里存疑,为什么是-0.5?,论文中说的是0.5
        fnmask = tf.cast(nmask, dtype)
        nvalues = tf.where(nmask, predictions[:, 0], 1. - fnmask)
        nvalues_flat = tf.reshape(nvalues, [-1])
        # Number of negative entries to select.
        max_neg_entries = tf.cast(tf.reduce_sum(fnmask), tf.int32)
        n_neg = tf.cast(negative_ratio * n_positives, tf.int32) + batch_size
        n_neg = tf.minimum(n_neg, max_neg_entries)

        val, idxes = tf.nn.top_k(-nvalues_flat, k=n_neg)
        max_hard_pred = -val[-1]
        # Final negative mask.
        nmask = tf.logical_and(nmask, nvalues < max_hard_pred)
        fnmask = tf.cast(nmask, dtype)

        # Add cross-entropy loss.
        with tf.name_scope('cross_entropy_pos'):
            loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=gclasses)
            loss = tf.div(tf.reduce_sum(loss * fpmask),
                          batch_size,
                          name='value')
            tf.losses.add_loss(loss)

        with tf.name_scope('cross_entropy_neg'):
            # 从不是正样本的框里面选择, 让他们预测是背景的概率
            loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=logits, labels=no_classes)
            # 预测背景的置信度越小,误差越大,  误差变小说的是,是背景要预测成背景
            loss = tf.div(tf.reduce_sum(loss * fnmask),
                          batch_size,
                          name='value')
            tf.losses.add_loss(loss)

        # Add localization loss: smooth L1, L2, ...
        with tf.name_scope('localization'):
            # Weights Tensor: positive mask + random negative.
            weights = tf.expand_dims(alpha * fpmask, axis=-1)
            loss = custom_layers.abs_smooth(localisations - glocalisations)
            loss = tf.div(tf.reduce_sum(loss * weights),
                          batch_size,
                          name='value')
            tf.losses.add_loss(loss)
        pass

    pass