def get_inputs(self): self.log_x_encode_mean = sequence_mean(tf.log(self.y_encode + 1), self.encode_series_len-self.decode_series_len) self.log_x_encode = transform(self.y_encode, self.log_x_encode_mean) self.log_volume_encode_mean = sequence_mean(tf.log(self.volume_encode + 1), self.encode_series_len-self.decode_series_len) self.log_volume_encode = transform(self.volume_encode, self.log_volume_encode_mean) self.x = tf.expand_dims(self.log_x_encode, 2) self.encode_features = tf.concat([ tf.expand_dims(self.log_volume_encode, 2), tf.expand_dims(tf.cast(self.is_today, tf.float32), 2), tf.tile(tf.reshape(self.log_volume_encode_mean, (-1, 1, 1)), (1, tf.shape(self.y_encode)[1], 1)), tf.tile(tf.reshape(self.log_x_encode_mean, (-1, 1, 1)), (1, tf.shape(self.y_encode)[1], 1)), ], axis=2) decode_idx = tf.tile(tf.expand_dims(tf.range(self.decode_series_len), 0), (tf.shape(self.y_decode)[0], 1)) self.decode_features = tf.concat([ tf.one_hot(decode_idx, self.decode_series_len), tf.tile(tf.reshape(self.log_x_encode_mean, (-1, 1, 1)), (1, self.decode_series_len, 1)) ], axis=2)
def get_inputs(self, opens, highs, lows, closes, volumes, positions, order_prices, current_prices, time_since, todays): log_x_mean = sequence_mean(tf.log((highs + lows) / 2. + 1), self.series_length) log_x = transform((highs + lows) / 2., log_x_mean) log_opens_mean = sequence_mean(tf.log(opens + 1), self.series_length) log_opens = transform(opens, log_opens_mean) log_highs_mean = sequence_mean(tf.log(highs + 1), self.series_length) log_highs = transform(highs, log_highs_mean) log_lows_mean = sequence_mean(tf.log(lows + 1), self.series_length) log_lows = transform(lows, log_lows_mean) log_closes_mean = sequence_mean(tf.log(closes + 1), self.series_length) log_closes = transform(closes, log_closes_mean) log_volumes_mean = sequence_mean(tf.log(volumes + 1), self.series_length) log_volumes = transform(volumes, log_volumes_mean) log_order_pricess = tf.log(order_prices + 1) - log_x_mean log_current_prices = tf.log(current_prices + 1) - log_x_mean x = tf.expand_dims(log_x, 2) features = tf.concat([ tf.expand_dims(log_opens, 2), tf.expand_dims(log_highs, 2), tf.expand_dims(log_lows, 2), tf.expand_dims(log_closes, 2), tf.expand_dims(log_volumes, 2), tf.tile(tf.expand_dims(tf.one_hot(positions + 1, 3), 1), (1, tf.shape(opens)[1], 1)), tf.tile(tf.expand_dims(tf.one_hot(time_since, 60), 1), (1, tf.shape(opens)[1], 1)), tf.expand_dims(tf.cast(todays, tf.float32), 2), tf.tile(tf.reshape(log_opens_mean, (-1, 1, 1)), (1, tf.shape(opens)[1], 1)), tf.tile(tf.reshape(log_highs_mean, (-1, 1, 1)), (1, tf.shape(opens)[1], 1)), tf.tile(tf.reshape(log_lows_mean, (-1, 1, 1)), (1, tf.shape(opens)[1], 1)), tf.tile(tf.reshape(log_closes_mean, (-1, 1, 1)), (1, tf.shape(opens)[1], 1)), tf.tile(tf.reshape(log_volumes_mean, (-1, 1, 1)), (1, tf.shape(opens)[1], 1)), tf.tile(tf.reshape(log_x_mean, (-1, 1, 1)), (1, tf.shape(opens)[1], 1)), tf.tile(tf.reshape(log_order_pricess, (-1, 1, 1)), (1, tf.shape(opens)[1], 1)), tf.tile(tf.reshape(log_current_prices, (-1, 1, 1)), (1, tf.shape(opens)[1], 1)), ], axis=2) return tf.concat([x, features], axis=2)
def get_current_pose(self): frame = str(self.frameline.text()) self.tf_listener.waitForTransform(frame, self.robot_frame_name, rospy.Time(), rospy.Duration(2.)) p_base = tfu.transform(frame, self.robot_frame_name, self.tf_listener) \ * tfu.tf_as_matrix(([0., 0., 0., 1.], tr.quaternion_from_euler(0,0,0))) t, r = tfu.matrix_as_tf(p_base) x = t[0] y = t[1] theta = tr.euler_from_quaternion(r)[2] print x,y,theta self.xline.setText(str(x)) self.yline.setText(str(y)) self.tline.setText(str(math.degrees(theta)))
def get_current_pose(self): frame = str(self.frameline.text()) self.tf_listener.waitForTransform(frame, self.robot_frame_name, rospy.Time(), rospy.Duration(2.)) p_base = tfu.transform(frame, self.robot_frame_name, self.tf_listener) \ * tfu.tf_as_matrix(([0., 0., 0., 1.], tr.quaternion_from_euler(0,0,0))) t, r = tfu.matrix_as_tf(p_base) x = t[0] y = t[1] theta = tr.euler_from_quaternion(r)[2] print x, y, theta self.xline.setText(str(x)) self.yline.setText(str(y)) self.tline.setText(str(math.degrees(theta)))
def pose_cartesian(self, frame='base_link'): gripper_tool_frame = self.arm + '_gripper_tool_frame' return tfu.transform(frame, gripper_tool_frame, self.tf_listener)
def _turn_by(self, delta_ang, block=True): current_ang_odom = tr.euler_from_matrix(tfu.transform('base_footprint',\ 'odom_combined', self.tflistener)[0:3, 0:3], 'sxyz')[2] self.turn_to(current_ang_odom + delta_ang, block)
def get_pose(self): p_base = tfu.transform('map', 'base_footprint', self.tflistener) \ * tfu.tf_as_matrix(([0., 0., 0., 1.], tr.quaternion_from_euler(0,0,0))) return tfu.matrix_as_tf(p_base)
def get_inputs(self): self.log_x_encode_mean = sequence_mean( tf.log((self.high_encode + self.low_encode) / 2. + 1), self.series_length) self.log_x_encode = transform( (self.high_encode + self.low_encode) / 2., self.log_x_encode_mean) self.log_open_encode_mean = sequence_mean(tf.log(self.open_encode + 1), self.series_length) self.log_open_encode = transform(self.open_encode, self.log_open_encode_mean) self.log_high_encode_mean = sequence_mean(tf.log(self.high_encode + 1), self.series_length) self.log_high_encode = transform(self.high_encode, self.log_high_encode_mean) self.log_low_encode_mean = sequence_mean(tf.log(self.low_encode + 1), self.series_length) self.log_low_encode = transform(self.low_encode, self.log_low_encode_mean) self.log_close_encode_mean = sequence_mean( tf.log(self.close_encode + 1), self.series_length) self.log_close_encode = transform(self.close_encode, self.log_close_encode_mean) self.log_volume_encode_mean = sequence_mean( tf.log(self.volume_encode + 1), self.series_length) self.log_volume_encode = transform(self.volume_encode, self.log_volume_encode_mean) self.position = tf.placeholder(tf.int32, [None]) self.log_order_price = tf.log(self.order_price + 1) - self.log_x_encode_mean self.log_est_current_price = tf.log(self.est_current_price + 1) - self.log_x_encode_mean self.x = tf.expand_dims(self.log_x_encode, 2) self.features = tf.concat( [ tf.expand_dims(self.log_open_encode, 2), tf.expand_dims(self.log_high_encode, 2), tf.expand_dims(self.log_low_encode, 2), tf.expand_dims(self.log_close_encode, 2), tf.expand_dims(self.log_volume_encode, 2), tf.tile(tf.expand_dims(tf.one_hot(self.position + 1, 3), 1), (1, tf.shape(self.open_encode)[1], 1)), tf.tile( tf.expand_dims(tf.one_hot(self.time_since_open, 60), 1), (1, tf.shape(self.open_encode)[1], 1)), #tf.expand_dims(tf.cast(self.is_today, tf.float32), 2), tf.tile(tf.reshape(self.log_open_encode_mean, (-1, 1, 1)), (1, tf.shape(self.open_encode)[1], 1)), tf.tile(tf.reshape(self.log_high_encode_mean, (-1, 1, 1)), (1, tf.shape(self.open_encode)[1], 1)), tf.tile(tf.reshape(self.log_low_encode_mean, (-1, 1, 1)), (1, tf.shape(self.open_encode)[1], 1)), tf.tile(tf.reshape(self.log_close_encode_mean, (-1, 1, 1)), (1, tf.shape(self.open_encode)[1], 1)), tf.tile(tf.reshape(self.log_volume_encode_mean, (-1, 1, 1)), (1, tf.shape(self.open_encode)[1], 1)), tf.tile(tf.reshape(self.log_x_encode_mean, (-1, 1, 1)), (1, tf.shape(self.open_encode)[1], 1)), tf.tile(tf.reshape(self.log_order_price, (-1, 1, 1)), (1, tf.shape(self.open_encode)[1], 1)), tf.tile(tf.reshape(self.log_est_current_price, (-1, 1, 1)), (1, tf.shape(self.open_encode)[1], 1)), ], axis=2) self.x = tf.concat([self.x, self.features], axis=2)