def _adaptive_heun_step(self, rk_state):
        """Take an adaptive Runge-Kutta step to integrate the ODE."""
        y0, f0, _, t0, dt, interp_coeff = rk_state
        ########################################################
        #                      Assertions                      #
        ########################################################
        assert t0 + dt > t0, 'underflow in dt {}'.format(dt.item())
        for y0_ in y0:
            assert _is_finite(tf.math.abs(y0_)), 'non-finite values in state `y`: {}'.format(y0_)
        y1, f1, y1_error, k = _runge_kutta_step(self.func, y0, f0, t0, dt, tableau=_ADAPTIVE_HEUN_TABLEAU)

        ########################################################
        #                     Error Ratio                      #
        ########################################################
        # print("y error", y1_error[0].numpy())
        mean_sq_error_ratio = _compute_error_ratio(y1_error, atol=self.atol, rtol=self.rtol, y0=y0, y1=y1)
        # print("mean sq error ratio", mean_sq_error_ratio[0].numpy())
        accept_step = tf.reduce_all(tf.convert_to_tensor(mean_sq_error_ratio, dtype=tf.float64) <= 1.)

        ########################################################
        #                   Update RK State                    #
        ########################################################
        y_next = y1 if accept_step else y0
        f_next = f1 if accept_step else f0
        t_next = t0 + dt if accept_step else t0
        interp_coeff = _interp_fit_adaptive_heun(y0, y1, k, dt) if accept_step else interp_coeff
        dt_next = _optimal_step_size(
            dt, mean_sq_error_ratio, safety=self.safety, ifactor=self.ifactor, dfactor=self.dfactor, order=5
        )
        rk_state = _RungeKuttaState(y_next, f_next, t0, t_next, dt_next, interp_coeff)
        return rk_state
Beispiel #2
0
    def _adaptive_tsit5_step(self, rk_state):
        """Take an adaptive Runge-Kutta step to integrate the ODE."""
        y0, f0, _, t0, dt, _ = rk_state
        ########################################################
        #                      Assertions                      #
        ########################################################
        assert t0 + dt > t0, 'underflow in dt {}'.format(dt.numpy())
        for y0_ in y0:
            assert _is_finite(
                tf.abs(y0_)), 'non-finite values in state `y`: {}'.format(y0_)
        y1, f1, y1_error, k = _runge_kutta_step(self.func,
                                                y0,
                                                f0,
                                                t0,
                                                dt,
                                                tableau=_TSITOURAS_TABLEAU)

        ########################################################
        #                     Error Ratio                      #
        ########################################################
        error_tol = tuple(
            self.atol +
            self.rtol * tf.reduce_max([tf.abs(y0_), tf.abs(y1_)])
            for y0_, y1_ in zip(y0, y1))
        tensor_error_ratio = tuple(
            y1_error_ / error_tol_
            for y1_error_, error_tol_ in zip(y1_error, error_tol))
        sq_error_ratio = tuple(
            tf.multiply(tensor_error_ratio_, tensor_error_ratio_)
            for tensor_error_ratio_ in tensor_error_ratio)
        mean_error_ratio = (
            sum(
                tf.reduce_sum(sq_error_ratio_)
                for sq_error_ratio_ in sq_error_ratio) /
            sum(_numel(sq_error_ratio_) for sq_error_ratio_ in sq_error_ratio))
        accept_step = mean_error_ratio <= 1.

        ########################################################
        #                   Update RK State                    #
        ########################################################
        y_next = y1 if accept_step else y0
        f_next = f1 if accept_step else f0
        t_next = t0 + dt if accept_step else t0
        dt_next = _optimal_step_size(dt,
                                     mean_error_ratio,
                                     self.safety,
                                     self.ifactor,
                                     self.dfactor,
                                     order=self.order)
        k_next = k if accept_step else self.rk_state.interp_coeff

        rk_state = _RungeKuttaState(y_next, f_next, t0, t_next, dt_next,
                                    k_next)

        return rk_state
Beispiel #3
0
    def _adaptive_dopri5_step(self, rk_state):
        """Take an adaptive Runge-Kutta step to integrate the ODE."""
        y0, f0, _, t0, dt, interp_coeff = rk_state
        ########################################################
        #                      Assertions                      #
        ########################################################
        dt = tf.cast(dt, t0.dtype)
        assert t0 + dt > t0, 'underflow in dt {}'.format(dt.numpy())
        for y0_ in y0:
            assert _is_finite(
                tf.abs(y0_)), 'non-finite values in state `y`: {}'.format(y0_)
        y1, f1, y1_error, k = _runge_kutta_step(self.func,
                                                y0,
                                                f0,
                                                t0,
                                                dt,
                                                tableau=self.tableau)

        ########################################################
        #                     Error Ratio                      #
        ########################################################
        mean_sq_error_ratio = _compute_error_ratio(y1_error,
                                                   atol=self.atol,
                                                   rtol=self.rtol,
                                                   y0=y0,
                                                   y1=y1)
        accept_step = tf.reduce_all(
            tf.convert_to_tensor(mean_sq_error_ratio) <= 1)

        ########################################################
        #                   Update RK State                    #
        ########################################################
        y_next = y1 if accept_step else y0
        f_next = f1 if accept_step else f0
        t_next = t0 + dt if accept_step else t0
        interp_coeff = _interp_fit_dopri5(y0, y1, k,
                                          dt) if accept_step else interp_coeff
        dt_next = _optimal_step_size(dt,
                                     mean_sq_error_ratio,
                                     safety=self.safety,
                                     ifactor=self.ifactor,
                                     dfactor=self.dfactor,
                                     order=self.order)
        rk_state = _RungeKuttaState(y_next, f_next, t0, t_next, dt_next,
                                    interp_coeff)
        return rk_state