Beispiel #1
0
 def create_dendrogram(self, dendrogram_layers, number_of_cases, bestk):
     self.reopen_current_session()
     test_cases = self.caseman.get_testing_cases()
     cases = test_cases[:number_of_cases]
     inputs = [c[0] for c in cases]
     targets = [c[1] for c in cases]
     feeder = {self.input: inputs, self.target: targets}
     grabvar_names = [grabvar for grabvar in self.grabvars]
     grabvar_layers = []
     for layer in dendrogram_layers:
         for grabvar in grabvar_names:
             if ('-'+str(layer)+'-out') in str(grabvar.name):
                 grabvar_layers.append(grabvar)
     for grabvar in grabvar_layers:
         features = []
         labels = []
         for index, case in enumerate(cases):
             self.test_func = self.predictor
             if bestk is not None:
                 self.test_func = self.gen_match_counter(self.predictor,
                                                         [TFT.one_hot_to_int(list(v)) for v in targets], k=bestk)
             testres, grabvals, _ = self.run_one_step(self.test_func, grabvar, self.probes,
                                                      session=self.current_session,
                                                      feed_dict=feeder, show_interval=self.show_interval,
                                                      step=self.global_training_step)
             labels.append(TFT.bits_to_str(case[1]))
             features.append(grabvals[index])
         TFT.dendrogram(features, labels, title=grabvar.name)
Beispiel #2
0
    def gen_dendrogram(self, numCases, msg="dendogram"):
        names = [x.name for x in self.grabvars]
        self.reopen_current_session()
        tCases = self.case_manager.get_training_cases()

        for j in range(0, len(self.grabvars)):
            features = []
            labels = []
            for i in range(0, numCases):
                print(i)
                case = tCases[i]
                feeder = {self.input: [case[0]], self.target: [case[1]]}
                result = self.current_session.run([self.output, self.grabvars],
                                                  feed_dict=feeder)
                r = result[1][j][0]
                print("\n\n")
                print(result[1][j][0])
                print("\n\n")
                features.append(r)
                labels.append(TFT.bits_to_str(case[0]))
            print(features)
            print(labels)
            #print(features)
            #print(labels)
            name = str(names[j]) + "Dendrogram"
            TFT.dendrogram(features, labels, title=name)
Beispiel #3
0
 def do_mapping(self, no_of_cases, defined_grab_vars=[], dendrogram_layers=[], bestk=None, dendrogram=False, labels=False):
     self.reopen_current_session()
     if len(defined_grab_vars) > 0:
         for (layer, type) in defined_grab_vars:
             if (layer-1, 'in') not in defined_grab_vars:
                 self.add_grabvar(layer-1, type)
     if len(dendrogram_layers) > 0:
         for layer in dendrogram_layers:
             self.add_dendrogram_var(layer-1, 'out')
     cases = self.get_random_cases(no_of_cases)
     inputs = [c[0] for c in cases]
     targets = [c[1] for c in cases]
     if bestk is not None:
         self.test_func = self.gen_match_counter(self.predictor, [TFT.one_hot_to_int(list(v)) for v in targets],
                                                 k=bestk)
     feeder = {self.input: inputs, self.target: targets}
     testres, grabvals, _ = self.run_one_step(self.test_func, [self.grabvars, self.dendrogram_vars], self.probes, session=self.current_session,
                                              feed_dict=feeder)
     self.display_grabvars(grabvals[0], self.grabvars)
     if dendrogram:
         if labels:
             input_den = [target for target in targets]
         else:
             input_den = [TFT.bits_to_str(case) for case in inputs]
         for i, grabval in enumerate(grabvals[1]):
             TFT.dendrogram(grabval, input_den, title=self.dendrogram_vars[i].name)
Beispiel #4
0
    def do_mapping(self,
                   session=None,
                   scatter=True,
                   mbs=100,
                   testset="mapping",
                   mapbs=10,
                   numeric=False):

        sess = session if session else self.current_session
        grabvars = [self.input, self.predictor]

        grabvars += self.mapvars

        randNum = random.randint(0, len(self.training_cases) - mapbs)
        cases = self.training_cases[randNum:randNum + mapbs]

        inputs = [c[0] for c in cases]
        targets = [c[1] for c in cases]
        predictions = []

        feeder = {self.input: inputs, self.target: targets}
        _, grabvals, _ = self.run_one_step([self.predictor],
                                           grabvars,
                                           session=sess,
                                           feed_dict=feeder,
                                           show_interval=None)
        for val in grabvals[1]:
            predictions.append(val)

        fig_index = 0
        names = [x.name for x in grabvars[2:-len(self.dendrogram_layers)]]
        for grabval in grabvals[2:-len(self.dendrogram_layers)]:

            if (type(grabval[0]) != np.ndarray):
                grabval = np.array([[c] for c in grabval])

            if numeric:
                TFT.display_matrix(grabval,
                                   fig=self.mapvar_figures[fig_index],
                                   title=names[fig_index])
            else:
                TFT.hinton_plot(grabval,
                                fig=self.mapvar_figures[fig_index],
                                title=names[fig_index])
            fig_index += 1

        input_strings = [TFT.bits_to_str(i) for i in inputs]
        target_strings = [TFT.bits_to_str(i) for i in targets]
        for dendro_vals in grabvals[-len(self.dendrogram_layers):]:

            TFT.dendrogram(dendro_vals, target_strings)

        a = input()
Beispiel #5
0
 def display_dendrograms(self,
                         grabbed_vals,
                         grabbed_vars,
                         labels,
                         start,
                         title="Dendrogram",
                         step=0):
     names = [x.name for x in grabbed_vars]
     msg = "Grabbed Variables at Step " + str(step)
     #print("\n" + msg, end="\n")
     fig_index = start
     for i, v in enumerate(grabbed_vals):
         #print(v, names[i])
         fig = self.grabvar_figures[fig_index]
         if fig == None:
             print('FIGURE IS NONE')
         TFT.dendrogram(v, labels[i], title=self.title + "_" + names[i])
         fig_index += 1
Beispiel #6
0
    def run_mapping(self, case_generator = None, mapBatchSize = 0, mapLayers = [], mapDendrograms = []):
        self.mapBatchSize = mapBatchSize        # Size of batch of cases used for a map test. 0 indicates no map test
        self.mapLayers = mapLayers              # List of layers(their indices) to be visualized during a map test
        self.mapDendrograms = mapDendrograms    # List of layers(their indices) whose activation patterns will be used to make dendrograms

        self.reopen_current_session()
        if self.mapBatchSize:
            # either a chosen set of cases or a random subset of the training cases:
            cases = case_generator() if case_generator else self.caseMan.get_mapping_cases(self.mapBatchSize)

            # Add the monitored variables
            self.add_mapvars()
            self.add_dendrogramvars()
            # Add all grabbed variables
            for weight in self.displayWeights:
                self.add_grabvar(weight, 'wgt')
            for bias in self.displayBiases:
                self.add_grabvar(bias, 'bias')

            # run map test
            mapvals, dendrovals, grabvals = self.do_mapping(session = self.current_session, cases = cases)

            # Plotting
            names = [x.name for x in self.mapVars]
            for i, v in enumerate(mapvals):
                if type(v) == np.ndarray and len(v.shape) > 1:  # If v is a matrix, use hinton plotting
                    TFT.hinton_plot(v, fig=None, title='Activation pattern of layer ' + names[i])

            if len(self.mapDendrograms) > 0:
                names = [x.name for x in self.dendrogramVars]
                if TFT.is_bit_vector(cases[0][0]):
                    labels = [TFT.bits_to_str(s[0]) for s in cases]
                else:
                    labels = [TFT.one_hot_to_int(c[1]) for c in cases]
                for (i, v) in enumerate(dendrovals):
                    TFT.dendrogram(v, labels, title = 'Dendrogram of ' + names[i])

            if len(grabvals) > 0:
                self.display_grabvars(grabvals, self.grabVars, step = self.globalTrainingStep)

        # hold until a button is pressed
        while (not PLT.waitforbuttonpress()):
            pass
        PLT.close('all')
Beispiel #7
0
 def display_mapvars(self,
                     grabbed_vals,
                     grabbed_vars,
                     mode='h',
                     cases=None):
     names = [x.name for x in grabbed_vars]
     fig_index = 0
     for i, v in enumerate(grabbed_vals):
         if mode == 'h':  # If v is a matrix
             TFT.hinton_plot(v,
                             fig=self.mapLayer_grabvar_figures[fig_index],
                             title=names[i])
             fig_index += 1
         elif mode == 'd':  # If v is a matrix
             labels = []
             for j in cases:
                 labels.append(''.join(str(e) for e in j[0]))
             grabbed_vals = grabbed_vals[0].tolist()
             TFT.dendrogram(grabbed_vals, labels)
Beispiel #8
0
    def do_mapping(self, sess, cases):
        #Separate the cases into inputs and targets
        inputs = [c[0] for c in cases]
        targets = [c[1] for c in cases]

        #Getting the value for the label
        tar = []
        for t in targets:
            tar.append(list(t).index(1))

        #Running the network without learning on the map batch
        feeder = {self.input: inputs, self.target: targets}
        testres, grabvals, _ = self.run_one_step(self.predictor,
                                                 self.grabvars,
                                                 self.probes,
                                                 session=sess,
                                                 feed_dict=feeder,
                                                 show_interval=None)

        #Putting the names into an array for easier look up
        names = [x.name for x in self.grabvars]
        zips = zip(names, grabvals)
        #Variables to show which
        num = 0
        num2 = 0
        #Plotting the different plots
        for i in zips:
            if (i[0] in self.Hnames):
                TFT.hinton_plot(i[1],
                                fig=PLT.figure(),
                                title=i[0] + ' at step ' + str("Test"))
            if (i[0] in self.Dnames):
                TFT.dendrogram(i[1], tar, title="dendrogram" + str(i[0]))
            if (i[0] in self.wnames):
                fig_wgt = PLT.figure()
                TFT.display_matrix(i[1], fig=fig_wgt, title=(i[0]))
                num += 1
            if (i[0] in self.bnames):
                fig_bias = PLT.figure()
                TFT.display_matrix(np.array([i[1]]),
                                   fig=fig_bias,
                                   title=(i[0]))
                num2 += 1
Beispiel #9
0
    def do_mapping(self, msg="Mapping", bestk=None, plot=""):
        self.reopen_current_session()
        cases = self.caseman.getMappingCases(self.mapBatchSize)
        self.grabvars.clear()
        helpers.add_grabvars(self, self.wantedMapGrabvars)
        helpers.add_grabvars(self, self.dendrogramLayers)
        inputs = [c[0] for c in cases]
        targets = [c[1] for c in cases]

        feeder = {self.input: inputs, self.target: targets}
        self.test_func = self.predictor
        if bestk is not None:
            self.test_func = self.gen_match_counter(
                self.predictor, [TFT.one_hot_to_int(list(v)) for v in targets],
                k=bestk)

        testres, grabvals, _ = self.run_one_step(self.test_func,
                                                 self.grabvars,
                                                 self.probes,
                                                 session=self.current_session,
                                                 feed_dict=feeder,
                                                 show_interval=None)

        if (self.mapplot == 'display'):
            eval("TFT.display_matrix(testres)")
        elif (self.mapplot == "hinton"):
            eval("TFT.hinton_plot(testres)")
        elif (plot == "dendrogram"):
            eval("TFT.dendrogram(inputs, targets)")

        # Dendrogram for each layer...
        # print("grabvals")
        # print(grabvals)

        for hiddenactivation in grabvals[len(self.wantedMapGrabvars):]:
            # index, type
            TFT.dendrogram(hiddenactivation, targets, ax=None)

            # TFT.dendrogram(feature, labels) --> mappe input og hidden activation patterns ... waht are the input, and what is the labels ? I see that labels are suppose to be string..
            # TFT.dendrogram(testres, targets, ax=None) # ser ut til å funke, men er jo feile verdier ?

        self.close_current_session(view=False)
Beispiel #10
0
    def display_dendrograms(self,
                            grabbed_vals,
                            grabbed_vars,
                            step,
                            onezero=False,
                            komma=False,
                            punktum=False,
                            decimals=1,
                            sleep_time=30,
                            leaf_font_size=None):
        names = [x.name for x in grabbed_vars]
        msg = "Grabbed Variables at Step " + str(step)
        print("\n" + msg, end="\n")
        for j, i, o in zip(range(len(grabbed_vals[0:len(grabbed_vals):2])),
                           grabbed_vals[0:len(grabbed_vals):2],
                           grabbed_vals[1:len(grabbed_vals):2]):
            in_pattern = []
            for line in i:
                in_vals = line
                for element in line:

                    # Format long floats, if one of the numbers is not an int.
                    if not element.is_integer():
                        in_vals = []
                        for element in line:
                            # Represent '0,0' as 'o'
                            if element == 0 and onezero == 1:
                                in_vals.append("o")
                            # Ceil the float by with specified number of decimals
                            else:
                                deci = "%." + str(decimals) + "f"
                                in_vals.append(deci % element)
                        break

                # Keep '.'
                if punktum:
                    din = TFT.bits_to_str(in_vals, komma)
                # Remove '.'
                else:
                    din = TFT.bits_to_str(in_vals, komma).replace(".", "")
                # Gather only unique cases
                if not din in in_pattern:
                    in_pattern.append(din)
                if not self.allUnique(in_pattern):
                    in_pattern.pop()

            if TFT.dendrogram(
                    o,
                    in_pattern,
                    title="dendrogram: " +
                    names[self.displayed_dendrograms].replace('out', ''),
                    sleep_time=sleep_time,
                    leaf_font_size=leaf_font_size):
                self.displayed_dendrograms += 2
Beispiel #11
0
    def _visualize_dendrogram(self):
        print('Print dendro')

        if 'map_dendrograms' in self.properties.keys(
        ) and self.properties['map_batch_size'] > 0:

            act = self.net.custom_run(
                [
                    self.net.A[a - 1]
                    for a in self.properties['map_dendrograms']
                ], {
                    self.net.x:
                    self.data_set.training.x[0:self.
                                             properties['map_batch_size']]
                })

            labels = []
            for l in self.data_set.training.x[:self.
                                              properties['map_batch_size']]:
                s = ''
                for b in l:
                    s += str(b) + '\n'
                labels.append(s)
            tft.dendrogram(act[0], labels)
Beispiel #12
0
 def display_dendrogram(self, vals, inputs, title):
     TFT.dendrogram(vals, inputs, title="Dendrogram: " + title)
Beispiel #13
0
def train(dims=[11,40,20,6],
          activation_func='tanh',
          softmax=True,
          cost_func=CE,
          lr= 0.5,
          vint = 10,
          bint = 10,
          acc_lim = 0.95,
          initial_weight_range=[-0.1,0.1],
          data_source='gen_wine_cases',
          case_count=1,
          vfrac=0.1,
          tfrac=0.1,
          mbs=1277,
          map_bs=20,
          epochs=10000,
          show_layers=None,
          dendogram_layers=None,
          show=True,
          map_layers = [1, 2]):


  #Training and validation accuracies
  train_acc= []
  val_acc = []
    
  # Import data
  dataset = getattr(TFT,data_source)(case_count=case_count)
  mnist = case_holder(dataset,tfrac=tfrac,vfrac=vfrac)

  sess = tf.InteractiveSession()
  # Create a multilayer model.

  # Input placeholders
  with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, dims[0]], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, dims[-1]], name='y-input')


  # We can't initialize these variables to 0 - the network will get stuck.
  def weight_variable(shape):
    """Create a weight variable with appropriate initialization."""
    if initial_weight_range == "scaled":
        initial = tf.truncated_normal(shape, stddev=0.1)
    else:
        initial = tf.Variable(tf.random_uniform(shape=shape,minval=initial_weight_range[0],maxval=[initial_weight_range[1]]))
    return tf.Variable(initial)

  def bias_variable(shape):
    """Create a bias variable with appropriate initialization."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

  def variable_summaries(var):
    """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
    with tf.name_scope('summaries'):
      mean = tf.reduce_mean(var)
      tf.summary.scalar('mean', mean)
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
      tf.summary.scalar('stddev', stddev)
      tf.summary.scalar('max', tf.reduce_max(var))
      tf.summary.scalar('min', tf.reduce_min(var))
      tf.summary.histogram('histogram', var)

  def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=getattr(tf.nn,activation_func)):
    """Reusable code for making a simple neural net layer.
    It does a matrix multiply, bias add, and then uses ReLU to nonlinearize.
    It also sets up name scoping so that the resultant graph is easy to read,
    and adds a number of summary ops.
    """
    # Adding a name scope ensures logical grouping of the layers in the graph.
    with tf.name_scope(layer_name):
      # This Variable will hold the state of the weights for the layer
      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights)
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases)
      with tf.name_scope('Wx_plus_b'):
        preactivate = tf.matmul(input_tensor, weights) + biases
        tf.summary.histogram('pre_activations', preactivate)
      activations = act(preactivate, name='activation')
      tf.summary.histogram('activations', activations)
      return activations



  previous_layer = x
  layers = []
  for i in range(1,len(dims)):
      layers.append(nn_layer(previous_layer,dims[i-1],dims[i],'layer'+str(i),act=tf.nn.relu))
      previous_layer = layers[-1]
  y = layers[-1]



  with tf.name_scope('error_func'):
    # The raw formulation of cross-entropy,
    #
    # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
    #                               reduction_indices=[1]))
    #
    # can be numerically unstable.
    #
    # So here we use tf.nn.softmax_cross_entropy_with_logits on the
    # raw outputs of the nn_layer above, and then average across
    # the batch.
    diff = error_funcs[cost_func](y_,y)
    #diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
    with tf.name_scope('total'):
      cross_entropy = tf.reduce_mean(diff)
  tf.summary.scalar('cross_entropy', cross_entropy)

  with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(learning_rate=lr).minimize(
        cross_entropy)

  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    with tf.name_scope('accuracy'):
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', accuracy)

  # Merge all the summaries and write them out to
  # /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
  merged = tf.summary.merge_all()
  train_writer = tf.summary.FileWriter('netsaver_test'+ '/train', sess.graph)
  test_writer = tf.summary.FileWriter('netsaver_test' + '/test')
  tf.global_variables_initializer().run()

  # Train the model, and also write summaries.
  # Every 10th step, measure test-set accuracy, and write test summaries
  # All other steps, run train_step on training data, & add training summaries

  def feed_dict(train):
    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
    if train == "train":
      xs, ys = mnist.train_next_batch(size=mbs)
    elif train == 'test':
      xs, ys = mnist.test_features, mnist.test_labels
    elif train == 'val':
        xs, ys = mnist.validation_features, mnist.validation_labels
    elif train == 'map':
        xs, ys = mnist.train_features[:map_bs], mnist.train_labels[:map_bs]
    else:
        raise Exception
    return {x: xs, y_: ys}

  for i in range(epochs):
    if i % bint == 0:  # Record summaries and test-set accuracy
      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict('train'))
      test_writer.add_summary(summary, i)
      print('Accuracy at step %s: %s' % (i, acc))

      # Own code for pulling training accuracy to matplot graph
      train_acc.append([i,acc])

      if acc >= acc_lim: break
    else:  # Record train set summaries, and train
      if i % 100 == 99:  # Record execution stats
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        summary, _ = sess.run([merged, train_step],
                              feed_dict=feed_dict('train'),
                              options=run_options,
                              run_metadata=run_metadata)
        train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
        train_writer.add_summary(summary, i)
        print('Adding run metadata for', i)
      else:  # Record a summary
        summary, _ = sess.run([merged, train_step], feed_dict=feed_dict('train'))
        train_writer.add_summary(summary, i)



  train_writer.close()
  test_writer.close()


  # Display final test scores
  summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict('train'))
  print('Final training set accuracy: %s' % ( acc))


  # Code for displaying graphs

  if show:
    TFT.plot_training_history(train_acc,val_acc)

  if map_layers:
      for l in map_layers:
          _, activation = sess.run([merged,layers[l]],feed_dict=feed_dict('map'))
          TFT.display_matrix(activation, title="mapping of layer: "+ str(l))
      # for variable in tf.trainable_variables():
      #     if variable.name in real-map_layer:
              # _,values = sess.run([merged,variable],feed_dict=feed_dict('map'))
              # if 'weigths' in variable.name:
              #     TFT.display_matrix(values)
              # elif 'biases' in variable.name:
              #     TFT.display_vector(values)
              # else:
              #     raise Exception("wrong dimensionality on show layers")

  if show_layers:
      for variable in tf.trainable_variables():
          if variable.name in show_layers:
              _,values = sess.run([merged,variable],feed_dict=feed_dict('map'))
              if len(values.shape) == 2:
                  TFT.display_matrix(values, title="weights of: "+variable.name)
              elif len(values.shape) == 1:
                  TFT.display_vector(values, title="biases of: "+variable.name)
              else:
                  raise Exception("wrong dimensionality on map layers")

  if dendogram_layers:
      for l in dendogram_layers:
          _, activation = sess.run([merged,layers[l]],feed_dict=feed_dict('map'))
          y_s = []
          #for y in feed_dict('map')[x]:
          #    y_s.append(TFT.segmented_vector_string(y))
          TFT.dendrogram(activation,feed_dict('map')[y_], title="Dendogram, layer: "+str(l))



  PLT.show()
Beispiel #14
0
    #making dendrograms
    if len(map_dendrograms) > len(map_layers):
        raise ValueError(
            'Custom error: Layers for dendrograms must be mapped via map_layers (len(map_dendrograms) > len(map_layers))'
        )
    saved_m_index = 0
    for module_index in map_dendrograms:
        all_inputs = []
        all_outputs = []
        for case in all_module_vals:
            all_inputs.append(case[saved_m_index][0])
            all_outputs.append(case[saved_m_index][1])
        title = "Dendrogram module %d: output" % module_index
        print("displaying dendrograms...")
        TFT.dendrogram(all_outputs, None, title=title)
        PLT.pause(1)
        saved_m_index += 1


#   ****  MAIN functions ****
# After running this, open a Tensorboard (Go to localhost:6006 in your Chrome Browser) and check the
# 'scalar', 'distribution' and 'histogram' menu options to view the probed variables.
def autoex(dims=[8, 4, 8],
           activation_hidden='relu',
           activation_output='softmax',
           cost_function='softmax_cross_entropy_with_logits',
           lrate=0.25,
           init_weight_range=[-.1, .1],
           data_source=['glass.txt', [0]],
           cfrac=1,
Beispiel #15
0
def main():
    parser = argument_parser.argument_parser()
    parser.parse()
    parser.organize()
    # (self, cases, vfrac, tfrac, casefrac, mapsep)
    caseman = gann_base.Caseman(parser.data_set_v, parser.vfrac_v,
                                parser.tfrac_v, parser.casefrac_v,
                                parser.mapbs_v)
    # (self, dims, cman, afunc, ofunc, cfunc, optimizer, lrate, wrange, vint, mbs, usevsi, showint=None):
    ann = gann_base.Gann(parser.dims_v,
                         caseman,
                         parser.afunc_v,
                         parser.ofunc_v,
                         parser.cfunc_v,
                         parser.optimizer_v,
                         parser.lrate_v,
                         parser.wrange_v,
                         parser.vint_v,
                         parser.mbs_v,
                         parser.usevsi_v,
                         showint=parser.steps_v - 1)

    for layer in parser.dispw_v:
        ann.add_grabvar(layer, type='wgt')
        ann.gen_probe(layer, 'wgt', 'hist')
    for layer in parser.dispb_v:
        ann.add_grabvar(layer, type='bias')
        ann.gen_probe(layer, 'bias', 'hist')

    # run, then map
    ann.run(steps=parser.steps_v,
            sess=None,
            continued=False,
            bestk=parser.best1_v)

    ann.remove_grabvars()
    for layer in parser.maplayers_v:
        if layer == 0:
            ann.add_grabvar(layer, type='in', add_figure=False)
        else:
            ann.add_grabvar(layer - 1, type='out', add_figure=False)
    res, labs = ann.do_mapping()
    results = []
    for i in range(len(res[0])):
        l = np.array([r[i] for r in res])
        l = l.reshape(l.shape[0], l.shape[2])
        TFT.hinton_plot(l,
                        title="mapping test output of layer " +
                        str(parser.maplayers_v[i]))
        results.append(l)

    for i, r in enumerate(results):
        # DENDOGRAM
        # if parser.maplayers_v[i] in parser.mapdend_v:
        if parser.best1_v:
            TFT.dendrogram(r,
                           list(map(TFT.one_hot_to_int, labs)),
                           title="Dendrogram " + str(parser.maplayers_v[i]))

    gann_base.PLT.show()
    TFT.fireup_tensorboard('probeview')