def generator(self, z, y=None, share_params=False, reuse=False, training=True, name=""):
        if y is None:
            x = tf.concat([z, y], axis=1)
        else:
            x = z

        x = tf.layers.flatten(x)

        x = tf.layers.dense(x, self.fc_unit, reuse=share_params, name='gen-dense-0')
        x = t.prelu(x, reuse=share_params, name='gen-prelu-0')

        x = tf.layers.dense(x, self.gf_dim * 8 * 7 * 7, reuse=share_params, name='gen-dense-1')
        x = t.batch_norm(x, reuse=share_params, is_train=training, name='gen-bn-0')
        x = t.prelu(x, reuse=share_params, name='gen-prelu-1')

        x = tf.reshape(x, (self.batch_size, 7, 7, self.gf_dim * 8))

        # x = deconv2d(x, f=self.gf_dim * 16, k=4, s=1, reuse=share_params, name='gen-deconv2d-0')
        # x = batch_norm(x, reuse=share_params, training=training, name="gen-bn-0")
        # x = prelu(x, reuse=share_params, name='gen-prelu-1')

        x = t.deconv2d(x, f=self.gf_dim * 4, k=3, s=2, reuse=share_params, name='gen-deconv2d-1')
        x = t.batch_norm(x, reuse=share_params, is_train=training, name="gen-bn-1")
        x = t.prelu(x, reuse=share_params, name='gen-prelu-2')

        x = t.deconv2d(x, f=self.gf_dim * 2, k=3, s=2, reuse=share_params, name='gen-deconv2d-2')
        x = t.batch_norm(x, reuse=share_params, is_train=training, name="gen-bn-2")
        x = t.prelu(x, reuse=share_params, name='gen-prelu-3')

        with tf.variable_scope("generator-%s" % name, reuse=reuse):
            x = t.deconv2d(x, f=self.channel, k=6, s=1, reuse=False, name='gen-' + name + '-deconv2d-3')
            x = tf.nn.sigmoid(x, name='gen' + name + '-sigmoid-0')

        return x
    def discriminator(self, x, y=None, share_params=False, reuse=False, name=""):
        with tf.variable_scope("discriminator-%s" % name, reuse=reuse):
            if y is None:
                x = tf.layers.flatten(x)

                x = tf.concat([x, y], axis=1)

                x = t.dense(x, self.height * self.width * self.channel,
                            name='disc-' + name + '-dense-0-y')
                x = tf.reshape(x, self.image_shape)
            else:
                pass

            # Using conv2d pooling instead of max_pool2d because of the speed.
            # In the CoGAN paper, max_pool2d is used.

            x = t.conv2d(x, f=self.df_dim, k=5, s=2, reuse=False, name='disc-' + name + '-conv2d-0')
            x = t.prelu(x, reuse=False, name='disc-' + name + '-prelu-0')
            # x = tf.nn.max_pool(x, ksize=2, strides=2, padding='SAME', name='disc' + name + '-max_pool2d-0')

            x = t.conv2d(x, f=self.df_dim * 2, k=5, s=2, reuse=False, name='disc-' + name + '-conv2d-1')
            x = t.batch_norm(x, is_train=False, name='disc-bn-0')
            x = t.prelu(x, reuse=False, name='disc-' + name + '-prelu-1')
            # x = tf.nn.max_pool(x, ksize=2, strides=2, padding='SAME', name='disc' + name + '-max_pool2d-1')

            x = tf.layers.flatten(x)

        x = t.dense(x, self.fc_unit, reuse=share_params, name='disc-dense-0')
        x = t.batch_norm(x, is_train=share_params, name='disc-bn-1')
        x = t.prelu(x, reuse=share_params, name='disc-prelu-2')

        x = t.dense(x, 1, reuse=share_params, name='disc-dense-1')

        return x
Beispiel #3
0
    def generator(self, z, reuse=None, is_train=True):
        """
        :param z: embeddings
        :param reuse: re-usable
        :param is_train: trainable
        :return: prob
        """
        with tf.variable_scope("generator", reuse=reuse):
            x = tf.reshape(z, (-1, 1, 1, self.z_dim))

            x = t.deconv2d(x,
                           self.df_dim * 8,
                           4,
                           1,
                           pad='VALID',
                           name='gen-deconv2d-1')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-1')
            x = tf.nn.relu(x)

            for i in range(1, 4):
                x = t.deconv2d(x,
                               self.df_dim * 8 // (2**i),
                               4,
                               2,
                               name='gen-deconv2d-%d' % (i + 1))
                x = t.batch_norm(x,
                                 is_train=is_train,
                                 name='gen-bn-%d' % (i + 1))
                x = tf.nn.relu(x)

            x = t.deconv2d(x, self.channel, 4, 2, name='gen-deconv2d-5')
            x = tf.nn.tanh(x)
            return x
Beispiel #4
0
    def discriminator(self, x, reuse=None):
        """
        :param x: images
        :param reuse: re-usable
        :return: logits
        """
        with tf.variable_scope("discriminator", reuse=reuse):
            x = t.conv2d(x, self.df_dim * 1, 4, 2, name='disc-conv2d-1')
            x = tf.nn.leaky_relu(x, alpha=0.1)

            x = t.conv2d(x, self.df_dim * 2, 4, 2, name='disc-conv2d-2')
            x = t.batch_norm(x, name='disc-bn-1')
            x = tf.nn.leaky_relu(x, alpha=0.1)

            x = t.conv2d(x, self.df_dim * 4, 4, 2, name='disc-conv2d-3')
            x = t.batch_norm(x, name='disc-bn-2')
            x = tf.nn.leaky_relu(x, alpha=0.1)

            x = t.conv2d(x, self.df_dim * 8, 4, 2, name='disc-conv2d-4')
            x = t.batch_norm(x, name='disc-bn-3')
            x = tf.nn.leaky_relu(x, alpha=0.1)

            x = tf.layers.flatten(x)

            x = t.dense(x, self.fc_unit, name='disc-fc-1')
            x = t.batch_norm(x, name='disc-bn-4')
            x = tf.nn.leaky_relu(x, alpha=0.1)

            x = t.dense(x, 1 + self.n_cont + self.n_cat, name='disc-fc-2')
            prob, cont, cat = x[:, 0], x[:, 1:1 + self.n_cont], x[:, 1 + self.n_cont:]  # logits

            prob = tf.nn.sigmoid(prob)  # probability
            cat = tf.nn.softmax(cat)    # categories

            return prob, cont, cat
Beispiel #5
0
    def generator(self, z, reuse=None, is_train=True):
        """
        # referred architecture in the paper
        : (1024)4c - (512)4c2s - (256)4c2s - (128)4c2s - (3)4c2s
        :param z: embeddings
        :param reuse: re-usable
        :param is_train: trainable
        :return: prob
        """
        with tf.variable_scope("generator", reuse=reuse):
            x = t.dense(z, self.gf_dim * 8 * 4 * 4, name='gen-fc-1')

            x = tf.reshape(x, (-1, 4, 4, self.gf_dim * 8))
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-1')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.gf_dim * 4, 4, 2, name='gen-deconv2d-1')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-2')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.gf_dim * 2, 4, 2, name='gen-deconv2d-2')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-3')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.gf_dim * 1, 4, 2, name='gen-deconv2d-3')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-4')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.channel, 4, 2, name='gen-deconv2d-4')
            x = tf.nn.tanh(x)

            return x
Beispiel #6
0
    def generator(self, z, c, reuse=None, is_train=True):
        """
        :param z: 139 z-noise
        :param c: 10 categories * 10 dimensions
        :param reuse: re-usable
        :param is_train: trainable
        :return: prob
        """
        with tf.variable_scope("generator", reuse=reuse):
            x = tf.concat([z, c], axis=1)  # (-1, 128 + 1 + 10)

            x = t.dense(x, 2 * 2 * 512, name='gen-fc-1')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-1')
            x = tf.nn.relu(x)

            x = tf.reshape(x, (-1, 2, 2, 512))

            x = t.deconv2d(x, self.gf_dim * 8, 4, 2, name='gen-deconv2d-1')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-2')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.gf_dim * 4, 4, 2, name='gen-deconv2d-2')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.gf_dim * 2, 4, 2, name='gen-deconv2d-3')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.gf_dim * 1, 4, 2, name='gen-deconv2d-4')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, 3, 4, 2, name='gen-deconv2d-5')
            x = tf.nn.tanh(x)
            return x
            def residual_block(x, f, name="", _is_train=True):
                with tf.variable_scope(name):
                    shortcut = tf.identity(x, name='n64s1-shortcut')

                    x = t.conv2d(x, f, 3, 1, name="n64s1-1")
                    x = t.batch_norm(x, is_train=_is_train, name="n64s1-bn-1")
                    x = t.prelu(x, reuse=reuse, name='n64s1-prelu-1')
                    x = t.conv2d(x, f, 3, 1, name="n64s1-2")
                    x = t.batch_norm(x, is_train=_is_train, name="n64s1-bn-2")
                    x = tf.add(x, shortcut)

                    return x
    def generator(self, z, reuse=None, is_train=True):
        with tf.variable_scope('generator', reuse=reuse):
            x = t.dense(z, self.gfc_unit, name='gen-fc-1')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-1')
            x = tf.nn.relu(x)

            x = t.dense(x, self.gfc_unit, name='gen-fc-2')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-2')
            x = tf.nn.relu(x)

            x = t.dense(x, self.n_input, name='gen-fc-3')
            x = tf.nn.sigmoid(x)
            return x
Beispiel #9
0
    def generator(self, y, z, reuse=None, is_train=True):
        """
        # Following a G Network, CiFar-like-hood, referred in the paper
        :param y: image label
        :param z: image noise
        :param reuse: re-usable
        :param is_train: trainable
        :return: prob
        """
        with tf.variable_scope("generator", reuse=reuse):
            x = tf.concat([z, y], axis=1)

            x = tf.layers.dense(x, self.gf_dim * 2, name='g-fc-0')
            x = tf.nn.relu(x)

            x = tf.layers.dense(x, self.gf_dim * 7 * 7, name='g-fc-1')
            x = tf.nn.relu(x)

            x = tf.reshape(x, [-1, 7, 7, self.gf_dim])

            x = t.deconv2d(x, f=self.gf_dim // 2, k=5, s=2, name='g-deconv-1')
            x = t.batch_norm(x, is_train=is_train)
            x = tf.nn.relu(x)

            x = t.deconv2d(x, f=1, k=5, s=2, name='g-deconv-2')  # channel
            x = tf.nn.sigmoid(x)  # x = tf.nn.tanh(x)

            return x
Beispiel #10
0
    def discriminator(self, x, reuse=None):
        """
        # Following a D Network, CiFar-like-hood, referred in the paper
        :param x: image, shape=(-1, 28, 28, 1)
        :param reuse: re-usable
        :return: logits, networks
        """
        with tf.variable_scope("discriminator", reuse=reuse):
            x = t.conv2d(x, self.df_dim, k=3, s=2, name='d-conv-0')
            x = tf.nn.leaky_relu(x)
            x = tf.layers.dropout(x, 0.5, name='d-dropout-0')

            for i in range(1, 2 * 2 + 1):
                f = self.df_dim * (i + 1)
                x = t.conv2d(x, f=f, k=3, s=(i % 2 + 1), name='d-conv-%d' % i)
                x = t.batch_norm(x)
                x = tf.nn.leaky_relu(x)
                x = tf.layers.dropout(x, 0.5, name='d-dropout-%d' % i)

            x = tf.layers.flatten(x)

            x = t.dense(x, self.fc_unit * 2, name='d-fc-1')
            net = tf.nn.leaky_relu(x)

            x = tf.layers.dense(net, 1, name='d-fc-2')  # logits

            return x, net
Beispiel #11
0
    def generator(self, z, reuse=None):
        with tf.variable_scope('generator', reuse=reuse):
            x = t.dense(z, self.gf_dim * 4 * 4 * 4, name='gen-fc-1')
            x = t.batch_norm(x, reuse=reuse, name='gen-bn-1')
            x = tf.nn.relu(x)

            x = tf.reshape(x, (-1, 4, 4, self.gf_dim * 4))

            for i in range(1, 4):
                x = t.deconv2d(x, self.gf_dim * 4 // (2 ** (i - 1)), 5, 2, name='gen-deconv2d-%d' % i)
                x = t.batch_norm(x, reuse=reuse, name='gen-bn-%d' % (i + 1))
                x = tf.nn.relu(x)

            x = t.deconv2d(x, self.channel, 5, 1, name='gen-deconv2d-5')
            x = tf.nn.tanh(x)
            return x
Beispiel #12
0
    def generator(self, z, reuse=None, is_train=True):
        with tf.variable_scope('generator', reuse=reuse):
            x = t.dense(z, self.gf_dim * 8 * 4 * 4, name='gen-fc-1')

            x = tf.reshape(x, [-1, 4, 4, self.gf_dim * 8])
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-1')
            x = tf.nn.relu(x)

            for i in range(1, 4):
                x = t.deconv2d(x, self.gf_dim * 4, 3, 2, name='gen-deconv2d-%d' % i)
                x = t.batch_norm(x, is_train=is_train, name='gen-bn-%d' % (i + 1))
                x = tf.nn.relu(x)

            x = t.conv2d(x, self.channel, 3, name='gen-conv2d-1')
            x = tf.nn.sigmoid(x)
            return x
Beispiel #13
0
    def discriminator(self, x, reuse=None):
        """
        # Following a D Network, CiFar-like-hood, referred in the paper
        :param x: images
        :param y: labels
        :param reuse: re-usable
        :return: classification, probability (fake or real), network
        """
        with tf.variable_scope("discriminator", reuse=reuse):
            x = t.conv2d(x, self.df_dim, 3, 2, name='disc-conv2d-1')
            x = tf.nn.leaky_relu(x, alpha=0.2)
            x = tf.layers.dropout(x, 0.5, name='disc-dropout2d-1')

            for i in range(5):
                x = t.conv2d(x,
                             self.df_dim * (2**(i + 1)),
                             k=3,
                             s=(i % 2 + 1),
                             name='disc-conv2d-%d' % (i + 2))
                x = t.batch_norm(x, reuse=reuse, name="disc-bn-%d" % (i + 1))
                x = tf.nn.leaky_relu(x, alpha=0.2)
                x = tf.layers.dropout(x,
                                      0.5,
                                      name='disc-dropout2d-%d' % (i + 1))

            net = tf.layers.flatten(x)

            cat = t.dense(net, self.n_classes, name='disc-fc-cat')
            disc = t.dense(net, 1, name='disc-fc-disc')

            return cat, disc, net
    def discriminator(self, x, reuse=None):
        """
        # Following a network architecture referred in the paper
        :param x: Input images (-1, 384, 384, 3)
        :param reuse: re-usability
        :return: HR (High Resolution) or SR (Super Resolution) images
        """
        with tf.variable_scope("discriminator", reuse=reuse):
            x = t.conv2d(x, self.df_dim, 3, 1, name='n64s1-1')
            x = tf.nn.leaky_relu(x)

            strides = [2, 1]
            filters = [1, 2, 2, 4, 4, 8, 8]

            for i, f in enumerate(filters):
                x = t.conv2d(x,
                             f=f,
                             k=3,
                             s=strides[i % 2],
                             name='n%ds%d-%d' % (f, strides[i % 2], i + 1))
                x = t.batch_norm(x, name='n%d-bn-%d' % (f, i + 1))
                x = tf.nn.leaky_relu(x)

            x = tf.layers.flatten(x)  # (-1, 96 * 96 * 64)

            x = t.dense(x, 1024, name='disc-fc-1')
            x = tf.nn.leaky_relu(x)

            x = t.dense(x, 1, name='disc-fc-2')
            # x = tf.nn.sigmoid(x)
            return x
Beispiel #15
0
    def discriminator(self, x, y=None, reuse=None, is_train=True):
        """
        :param x: images
        :param y: labels
        :param reuse: re-usable
        :param is_train: en/disable batch_norm, default True
        :return: logits
        """
        with tf.variable_scope("discriminator", reuse=reuse):
            if y:
                raise NotImplemented("[-] Not Implemented Yet...")

            x = t.conv2d(x, f=self.gf_dim * 1, name="disc-conv2d-0")
            x = tf.nn.leaky_relu(x)

            for i in range(1, 4):
                x = t.conv2d(x, f=self.gf_dim * (2 ** i), name="disc-conv2d-%d" % i)
                x = t.batch_norm(x, is_train=is_train)
                x = tf.nn.leaky_relu(x)

            feature_match = x   # (-1, 8, 8, 512)

            x = tf.layers.flatten(x)

            x = t.dense(x, 1, name='disc-fc-0')

            return feature_match, x
Beispiel #16
0
    def generator(self, z, y, reuse=None, is_train=True):
        """
        # Following a G Network, CiFar-like-hood, referred in the paper
        :param z: noise
        :param y: image label
        :param reuse: re-usable
        :param is_train: trainable
        :return: prob
        """
        with tf.variable_scope("generator", reuse=reuse):
            x = tf.concat([z, y], axis=1)  # (-1, 110)

            x = t.dense(x, self.gf_dim, name='gen-fc-1')
            x = tf.nn.relu(x)

            x = tf.reshape(x, (-1, 4, 4, 24))

            for i in range(1, 3):
                x = t.deconv2d(x,
                               self.gf_dim // (2**i),
                               5,
                               2,
                               name='gen-deconv2d-%d' % (i + 1))
                x = t.batch_norm(x,
                                 is_train=is_train,
                                 reuse=reuse,
                                 name="gen-bn-%d" % i)
                x = tf.nn.relu(x)

            x = t.deconv2d(x, self.channel, 5, 2, name='gen-deconv2d-4')
            x = tf.nn.tanh(x)  # scaling to [-1, 1]

            return x
Beispiel #17
0
    def generator(self, z, y=None, reuse=None, is_train=True):
        """
        :param z: embeddings
        :param y: labels
        :param reuse: re-usable
        :param is_train: en/disable batch_norm, default True
        :return: prob
        """
        with tf.variable_scope("generator", reuse=reuse):
            if y:
                raise NotImplemented("[-] Not Implemented Yet...")

            x = t.dense(z, f=self.fc_unit, name='gen-fc-0')
            x = tf.nn.leaky_relu(x)

            x = tf.reshape(x, [-1, 8, 8, self.fc_unit // (8 * 8)])

            for i in range(1, 4):
                x = t.deconv2d(x, f=self.gf_dim * (2 ** i), name="gen-conv2d-%d" % i)
                x = t.batch_norm(x, is_train=is_train)
                x = tf.nn.leaky_relu(x)

            x = t.deconv2d(x, f=3, s=1, name="gen-conv2d-4")  # (-1, 64, 64, 3)
            x = tf.sigmoid(x)  # [0, 1]

            return x
Beispiel #18
0
    def generator(self, z, y=None, share_params=False, reuse=False, name=""):
        x = t.dense(z, self.fc_g_unit, reuse=share_params, name='gen-fc-1')
        x = t.batch_norm(x, reuse=share_params, name='gen-bn-1')
        x = t.prelu(x, reuse=share_params, name='gen-prelu-1')

        x = t.dense(x,
                    self.gf_dim * 8 * 7 * 7,
                    reuse=share_params,
                    name='gen-fc-2')
        x = t.batch_norm(x, reuse=share_params, name='gen-bn-2')
        x = t.prelu(x, reuse=share_params, name='gen-prelu-2')

        x = tf.reshape(x, (-1, 7, 7, self.gf_dim * 8))

        for i in range(1, 3):
            x = t.deconv2d(x,
                           f=self.gf_dim * 4 // i,
                           k=3,
                           s=2,
                           reuse=share_params,
                           name='gen-deconv2d-%d' % i)
            x = t.batch_norm(x, reuse=share_params, name="gen-bn-%d" % (i + 2))
            x = t.prelu(x, reuse=share_params, name='gen-prelu-%d' % (i + 2))
        """
        x = z  # tf.concat([z, y], axis=1)

        loop = 5
        for i in range(1, loop):
            x = t.dense(x, self.fc_g_unit, reuse=share_params, name='gen-fc-%d' % i)
            x = t.batch_norm(x, reuse=share_params, name='gen-bn-%d' % i)
            x = t.prelu(x, reuse=share_params, name='gen-prelu-%d' % i)
        """

        with tf.variable_scope("generator-%s" % name, reuse=reuse):
            x = t.deconv2d(x,
                           f=self.channel,
                           k=6,
                           s=1,
                           reuse=False,
                           name='gen-' + name + '-deconv2d-3')
            x = tf.nn.sigmoid(x, name='gen' + name + '-sigmoid-1')
            """
            x = t.dense(x, self.n_input, reuse=False, name='gen-' + name + '-fc-%d' % loop)
            x = tf.nn.sigmoid(x)
            """

        return x
Beispiel #19
0
    def generator(self, z, reuse=None, is_train=True):
        """
        :param z: noise
        :param y: image label
        :param reuse: re-usable
        :param is_train: trainable
        :return: prob
        """
        with tf.variable_scope("generator", reuse=reuse):
            f = self.gf_dim * 8

            x = t.dense_alt(z, 4 * 4 * f, sn=True, name='gen-fc-1')

            x = tf.reshape(x, (-1, 4, 4, f))

            for i in range(self.n_layer // 2):
                if self.up_sampling:
                    x = t.up_sampling(x, interp=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
                    x = t.conv2d_alt(x, f // 2, 5, 1, pad=2, sn=True, use_bias=False, name='gen-conv2d-%d' % (i + 1))
                else:
                    x = t.deconv2d_alt(x, f // 2, 4, 2, sn=True, use_bias=False, name='gen-deconv2d-%d' % (i + 1))

                x = t.batch_norm(x, is_train=is_train, name='gen-bn-%d' % i)
                x = tf.nn.relu(x)

                f //= 2

            # Self-Attention Layer
            x = self.attention(x, f, reuse=reuse)

            for i in range(self.n_layer // 2, self.n_layer):
                if self.up_sampling:
                    x = t.up_sampling(x, interp=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
                    x = t.conv2d_alt(x, f // 2, 5, 1, pad=2, sn=True, use_bias=False, name='gen-conv2d-%d' % (i + 1))
                else:
                    x = t.deconv2d_alt(x, f // 2, 4, 2, sn=True, use_bias=False, name='gen-deconv2d-%d' % (i + 1))

                x = t.batch_norm(x, is_train=is_train, name='gen-bn-%d' % i)
                x = tf.nn.relu(x)

                f //= 2

            x = t.conv2d_alt(x, self.channel, 5, 1, pad=2, sn=True, name='gen-conv2d-%d' % (self.n_layer + 1))
            x = tf.nn.tanh(x)
            return x
Beispiel #20
0
    def encoder(self, x, reuse=None):
        """
        (64)4c2s - (128)4c2s - (256)4c2s
        :param x: images
        :param reuse: re-usable
        :return: logits
        """
        with tf.variable_scope('encoder', reuse=reuse):
            x = t.conv2d(x, self.df_dim * 1, 4, 2, name='enc-conv2d-1')
            x = tf.nn.leaky_relu(x)

            x = t.conv2d(x, self.df_dim * 2, 4, 2, name='enc-conv2d-2')
            x = t.batch_norm(x, name='enc-bn-1')
            x = tf.nn.leaky_relu(x)

            x = t.conv2d(x, self.df_dim * 4, 4, 2, name='enc-conv2d-3')
            x = t.batch_norm(x, name='enc-bn-2')
            x = tf.nn.leaky_relu(x)
            return x
Beispiel #21
0
    def decoder(self, x, reuse=None):
        """
        (128)4c2s - (64)4c2s - (3)4c2s
        :param x: embeddings
        :param reuse: re-usable
        :return: prob
        """
        with tf.variable_scope('decoder', reuse=reuse):
            x = t.deconv2d(x, self.df_dim * 2, 4, 2, name='dec-deconv2d-1')
            x = t.batch_norm(x, name='dec-bn-1')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.df_dim * 1, 4, 2, name='dec-deconv2d-2')
            x = t.batch_norm(x, name='dec-bn-2')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.channel, 4, 2, name='dec-deconv2d-3')
            x = tf.nn.tanh(x)
            return x
    def generator(self, x, reuse=None, is_train=True):
        """
        :param x: LR (Low Resolution) images, (-1, 96, 96, 3)
        :param reuse: scope re-usability
        :param is_train: is trainable, default True
        :return: SR (Super Resolution) images, (-1, 384, 384, 3)
        """

        with tf.variable_scope("generator", reuse=reuse):

            def residual_block(x, f, name="", _is_train=True):
                with tf.variable_scope(name):
                    shortcut = tf.identity(x, name='n64s1-shortcut')

                    x = t.conv2d(x, f, 3, 1, name="n64s1-1")
                    x = t.batch_norm(x, is_train=_is_train, name="n64s1-bn-1")
                    x = t.prelu(x, reuse=reuse, name='n64s1-prelu-1')
                    x = t.conv2d(x, f, 3, 1, name="n64s1-2")
                    x = t.batch_norm(x, is_train=_is_train, name="n64s1-bn-2")
                    x = tf.add(x, shortcut)

                    return x

            x = t.conv2d(x, self.gf_dim, 9, 1, name='n64s1-1')
            x = t.prelu(x, name='n64s1-prelu-1')

            skip_conn = tf.identity(x, name='skip_connection')

            # B residual blocks
            for i in range(1, 17):  # (1, 9)
                x = residual_block(x,
                                   self.gf_dim,
                                   name='b-residual_block_%d' % i,
                                   _is_train=is_train)

            x = t.conv2d(x, self.gf_dim, 3, 1, name='n64s1-3')
            x = t.batch_norm(x, is_train=is_train, name='n64s1-bn-3')

            x = tf.add(x, skip_conn)

            # sub-pixel conv2d blocks
            for i in range(1, 3):
                x = t.conv2d(x,
                             self.gf_dim * 4,
                             3,
                             1,
                             name='n256s1-%d' % (i + 2))
                x = t.sub_pixel_conv2d(x, f=None, s=2)
                x = t.prelu(x, name='n256s1-prelu-%d' % i)

            x = t.conv2d(x, self.channel, 9, 1,
                         name='n3s1')  # (-1, 384, 384, 3)
            x = tf.nn.tanh(x)
            return x
Beispiel #23
0
    def generator(self, z, reuse=None, is_train=True):
        with tf.variable_scope('generator', reuse=reuse):
            x = t.dense(z, self.gf_dim * 8 * 4 * 4)

            x = tf.reshape(x, [-1, 4, 4, self.gf_dim * 8])
            x = t.batch_norm(x, is_train=is_train)
            x = tf.nn.leaky_relu(x)

            x = t.deconv2d(x, self.gf_dim * 4, name='g-deconv-1')
            x = t.batch_norm(x, is_train=is_train)
            x = tf.nn.leaky_relu(x)

            x = t.deconv2d(x,  self.gf_dim * 2, name='g-deconv-2')
            x = t.batch_norm(x, is_train=is_train)
            x = tf.nn.leaky_relu(x)

            logits = t.deconv2d(x, self.channel, name='g-deconv-3')
            prob = tf.nn.tanh(logits)

            return prob
Beispiel #24
0
    def generator(self, x, reuse=None, is_train=True):
        with tf.variable_scope("generator", reuse=reuse):
            for i in range(2):
                x = t.dense(x, self.fc_unit, name='g-fc-%d' % i)
                x = t.batch_norm(x, is_train=is_train)
                x = tf.nn.leaky_relu(x)

            logits = t.dense(x, self.n_input, name='g-fc-2')
            prob = tf.nn.sigmoid(logits)

        return prob
Beispiel #25
0
    def discriminator(self, x, reuse=None):
        """ Same as DCGAN Disc Net """
        with tf.variable_scope('discriminator', reuse=reuse):
            x = t.conv2d(x, self.df_dim * 1, 5, 2, name='disc-conv2d-1')
            x = tf.nn.leaky_relu(x)

            x = t.conv2d(x, self.df_dim * 2, 5, 2, name='disc-conv2d-2')
            x = t.batch_norm(x, name='disc-bn-1')
            x = tf.nn.leaky_relu(x)

            x = t.conv2d(x, self.df_dim * 4, 5, 2, name='disc-conv2d-3')
            x = t.batch_norm(x, name='disc-bn-2')
            x = tf.nn.leaky_relu(x)

            x = tf.layers.flatten(x)

            logits = t.dense(x, 1, name='disc-fc-1')
            prob = tf.nn.sigmoid(logits)

            return prob, logits
Beispiel #26
0
    def discriminator(self, x, reuse=None):
        with tf.variable_scope('discriminator', reuse=reuse):
            for i in range(1, 4):
                x = t.conv2d(x, self.gf_dim * (2 ** (i - 1)), 3, 2, name='disc-conv2d-%d' % i)
                x = t.batch_norm(x, name='disc-bn-%d' % i)
                x = tf.nn.leaky_relu(x, alpha=0.3)

            x = tf.layers.flatten(x)

            x = t.dense(x, 1, name='disc-fc-1')
            return x
Beispiel #27
0
    def generator(self, z, reuse=None, is_train=True):
        with tf.variable_scope('generator', reuse=reuse):
            x = t.dense(z, self.fc_unit, name='gen-fc-0')
            x = t.batch_norm(x, is_train=is_train)
            x = tf.nn.leaky_relu(x)

            x = t.dense(x, self.gf_dim * 4 * 7 * 7, name='gen-fc-1')
            x = t.batch_norm(x, is_train=is_train)
            x = tf.nn.leaky_relu(x)

            x = tf.reshape(x, [-1, 7, 7, self.gf_dim * 4])

            x = t.deconv2d(x, self.gf_dim * 2, name='gen-deconv2d-0')
            x = t.batch_norm(x, is_train=is_train)
            x = tf.nn.leaky_relu(x)

            logits = t.deconv2d(x, self.channel, name='gen-deconv2d-1')
            prob = tf.nn.sigmoid(logits)

            return prob
    def res_block(x, f, scale_type, use_bn=True, name=""):
        with tf.variable_scope("res_block-%s" % name):
            assert scale_type in ["up", "down"]
            scale_up = False if scale_type == "down" else True

            ssc = x

            x = t.batch_norm(x, name="bn-1") if use_bn else x
            x = tf.nn.relu(x)
            x = t.conv2d_alt(x, f, sn=True, name="conv2d-1")

            x = t.batch_norm(x, name="bn-2") if use_bn else x
            x = tf.nn.relu(x)

            if not scale_up:
                x = t.conv2d_alt(x, f, sn=True, name="conv2d-2")
                x = tf.layers.average_pooling2d(x, pool_size=(2, 2))
            else:
                x = t.deconv2d_alt(x, f, sn=True, name="up-sampling")

            return x + ssc
    def encoder(self, x, reuse=None):
        with tf.variable_scope('encoder', reuse=reuse):
            x = t.conv2d(x, self.df_dim * 1, 5, 2, name='enc-conv2d-1')
            x = tf.nn.leaky_relu(x)

            x = t.conv2d(x, self.df_dim * 2, 5, 2, name='enc-conv2d-2')
            x = t.batch_norm(x, name='enc-bn-1')
            x = tf.nn.leaky_relu(x)

            x = t.conv2d(x, self.df_dim * 4, 5, 2, name='enc-conv2d-3')
            x = t.batch_norm(x, name='enc-bn-2')
            x = tf.nn.leaky_relu(x)

            x = t.conv2d(x, self.df_dim * 8, 5, 2, name='enc-conv2d-4')
            x = t.batch_norm(x, name='enc-bn-3')
            x = tf.nn.leaky_relu(x)

            x = tf.layers.flatten(x)

            x = t.dense(x, self.z_dim, name='enc-fc-1')
            return x
Beispiel #30
0
    def generator(self, z, reuse=None, is_train=True):
        """ Same as DCGAN Gen Net """
        with tf.variable_scope('generator', reuse=reuse):
            x = t.dense(z, self.gf_dim * 4 * 4 * 4, name='gen-fc-1')

            x = tf.reshape(x, [-1, 4, 4, self.gf_dim * 4])
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-1')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.gf_dim * 2, 5, 2, name='gen-deconv2d-1')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-2')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.gf_dim * 1, 5, 2, name='gen-deconv2d-2')
            x = t.batch_norm(x, is_train=is_train, name='gen-bn-3')
            x = tf.nn.relu(x)

            x = t.deconv2d(x, self.channel, 5, 2, name='gen-deconv2d-3')
            x = tf.nn.tanh(x)

            return x