Beispiel #1
0
 def test_combined_sanity(self, dtype, idx_dtype, axis, sorted):
     x = tensor.vector(name='x', dtype=dtype)
     yv, yi = topk_and_argtopk(x, 1, axis=axis, sorted=sorted, idx_dtype=idx_dtype)
     fn = theano.function([x], [yv, yi])
     xval = np.asarray([1]).astype(dtype)
     yvval, yival = fn(xval)
     assert yival == np.asarray([0], dtype=idx_dtype)
     utt.assert_allclose(xval, yvval)
     assert yvval.dtype == xval.dtype
     assert yival.dtype == np.dtype(idx_dtype)
Beispiel #2
0
 def test_combined_sanity(self, dtype, idx_dtype, axis, sorted):
     x = tensor.vector(name='x', dtype=dtype)
     yv, yi = topk_and_argtopk(x, 1, axis=axis, sorted=sorted, idx_dtype=idx_dtype)
     fn = theano.function([x], [yv, yi], mode=self.mode)
     assert any([isinstance(n.op, self.op_class) for n in fn.maker.fgraph.apply_nodes])
     xval = np.asarray([1]).astype(dtype)
     yvval, yival = fn(xval)
     assert yival == np.asarray([0], dtype=idx_dtype)
     utt.assert_allclose(xval, yvval)
     assert yvval.dtype == xval.dtype
     assert yival.dtype == np.dtype(idx_dtype)
Beispiel #3
0
 def test_combined_sanity(self, dtype, idx_dtype, axis, sorted):
     x = tensor.vector(name="x", dtype=dtype)
     yv, yi = topk_and_argtopk(x, 1, axis=axis, sorted=sorted, idx_dtype=idx_dtype)
     fn = theano.function([x], [yv, yi], mode=self.mode)
     assert any(
         [isinstance(n.op, self.op_class) for n in fn.maker.fgraph.apply_nodes]
     )
     xval = np.asarray([1]).astype(dtype)
     yvval, yival = fn(xval)
     assert yival == np.asarray([0], dtype=idx_dtype)
     utt.assert_allclose(xval, yvval)
     assert yvval.dtype == xval.dtype
     assert yival.dtype == np.dtype(idx_dtype)
 def test_combined_sanity(self, dtype, idx_dtype, axis, sorted):
     x = tensor.vector(name='x', dtype=dtype)
     yv, yi = topk_and_argtopk(x,
                               1,
                               axis=axis,
                               sorted=sorted,
                               idx_dtype=idx_dtype)
     fn = theano.function([x], [yv, yi])
     xval = np.asarray([1]).astype(dtype)
     yvval, yival = fn(xval)
     assert yival == np.asarray([0], dtype=idx_dtype)
     utt.assert_allclose(xval, yvval)
     assert yvval.dtype == xval.dtype
     assert yival.dtype == np.dtype(idx_dtype)
    def test_combined_1d(self, size, k, dtype, sorted, idx_dtype):
        if isinstance(k, str):
            k = eval(k.replace('n', str(size)))

        x = theano.tensor.vector(name='x', dtype=dtype)
        yv, yi = topk_and_argtopk(x, k, sorted=sorted, idx_dtype=idx_dtype)
        fn = theano.function([x], [yv, yi])
        # generate a all-unique array
        xval = gen_unique_vector(size, dtype)
        yvval, yival = fn(xval)
        idx = (slice(-k, None) if k > 0 else slice(-k))
        goali = np.argsort(xval)[idx].astype(idx_dtype)
        goalv = xval[goali]

        # due to uniqueness, we expect indices same
        assert np.all(xval[np.sort(yival)] == xval[np.sort(goali)])
        utt.assert_allclose(np.sort(yvval), goalv)
Beispiel #6
0
    def test_combined_1d(self, size, k, dtype, sorted, idx_dtype):
        if isinstance(k, str):
            k = eval(k.replace('n', str(size)))

        x = theano.tensor.vector(name='x', dtype=dtype)
        yv, yi = topk_and_argtopk(x, k, sorted=sorted, idx_dtype=idx_dtype)
        fn = theano.function([x], [yv, yi])
        # generate a all-unique array
        xval = gen_unique_vector(size, dtype)
        yvval, yival = fn(xval)
        idx = (slice(-k, None) if k > 0 else slice(-k))
        goali = np.argsort(xval)[idx].astype(idx_dtype)
        goalv = xval[goali]

        # due to uniqueness, we expect indices same
        assert np.all(xval[np.sort(yival)] == xval[np.sort(goali)])
        utt.assert_allclose(np.sort(yvval), goalv)
Beispiel #7
0
    def test_combined_infer_shape(self, shp, k_):
        ndim = len(shp)
        for axis in range(-ndim, ndim):
            if isinstance(k_, str):
                k = eval(k_.replace("n", str(shp[axis])))
            else:
                k = k_

            if k == 0:
                continue

            x = theano.tensor.tensor(
                name="x", broadcastable=(False,) * len(shp), dtype=theano.config.floatX
            )
            yv, yi = topk_and_argtopk(x, k, axis=axis, sorted=False, idx_dtype="int32")
            size = reduce(int.__mul__, shp)
            xval = gen_unique_vector(size, theano.config.floatX).reshape(shp)
            self._compile_and_check([x], [yv, yi], [xval], TopKOp)
Beispiel #8
0
    def test_combined_infer_shape(self, shp, k_):
        ndim = len(shp)
        for axis in range(-ndim, ndim):
            if isinstance(k_, str):
                k = eval(k_.replace('n', str(shp[axis])))
            else:
                k = k_

            if k == 0:
                continue

            x = theano.tensor.tensor(
                name='x', broadcastable=(False,) * len(shp),
                dtype=theano.config.floatX)
            yv, yi = topk_and_argtopk(x, k, axis=axis, sorted=False, idx_dtype='int32')
            size = reduce(int.__mul__, shp)
            xval = gen_unique_vector(size, theano.config.floatX).reshape(shp)
            self._compile_and_check(
                [x], [yv, yi], [xval], TopKOp)
Beispiel #9
0
    def test_combined_1d(self, size, k, dtype, sorted, idx_dtype):
        if isinstance(k, str):
            k = eval(k.replace("n", str(size)))

        x = theano.tensor.vector(name="x", dtype=dtype)
        yv, yi = topk_and_argtopk(x, k, sorted=sorted, idx_dtype=idx_dtype)
        fn = theano.function([x], [yv, yi], mode=self.mode)
        assert any(
            [isinstance(n.op, self.op_class) for n in fn.maker.fgraph.apply_nodes]
        )
        # generate a all-unique array
        xval = gen_unique_vector(size, dtype)
        yvval, yival = fn(xval)
        idx = slice(-k, None) if k > 0 else slice(-k)
        goali = np.argsort(xval)[idx].astype(idx_dtype)
        goalv = xval[goali]

        # due to uniqueness, we expect indices same
        assert np.all(xval[np.sort(yival)] == xval[np.sort(goali)])
        utt.assert_allclose(np.sort(yvval), goalv)