Beispiel #1
0
def main():
    # The tests can't even run if nose isn't available, so might as well  give the
    # user a civilized error message in that case.

    try:
        import nose
    except ImportError:
        error = """\
    ERROR: The IPython test suite requires nose to run.

    Please install nose on your system first and try again.
    For information on installing nose, see:
    http://nose.readthedocs.org/en/latest/

    Exiting."""
        import sys
        print(error, file=sys.stderr)
    else:
        import theano
        theano.test()
def main():
    # The tests can't even run if nose isn't available, so might as well  give the
    # user a civilized error message in that case.

    try:
        import nose
    except ImportError:
        error = """\
    ERROR: The IPython test suite requires nose to run.

    Please install nose on your system first and try again.
    For information on installing nose, see:
    http://nose.readthedocs.org/en/latest/

    Exiting."""
        import sys
        print(error, file=sys.stderr)
    else:
        import theano
        theano.test()
Beispiel #3
0
__author__ = 'rguo12'

import theano
theano.test()
Beispiel #4
0
# # print (str(w.get_value()) + str(b.get_value()))

# # Construct Theano expression graph
# p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))   # Probability that target = 1
# prediction = p_1 > 0.5                    # The prediction thresholded
# xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
# cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
# gw, gb = T.grad(cost, [w, b])             # Compute the gradient of the cost
#                                           # (we shall return to this in a
#                                           # following section of this tutorial)

# # Compile
# train = theano.function(
#           inputs=[x,y],
#           outputs=[prediction, xent],
#           updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
# predict = theano.function(inputs=[x], outputs=prediction)

# # Train
# for i in range(training_steps):
#     pred, err = train(D[0], D[1])

# print ("Final model:")
# print (str(w.get_value()) + str(b.get_value()))
# print ("target values for D:"+ D[1])
# print ("prediction on D:"+ predict(D[0]))

import theano
theano.test()

# print (theano.config)