Beispiel #1
0
    def test_table(self):
        # Test reported values of gamma by taking cp/cv from Span2000 (page 1410 and below)
        # Test if the table of the original paper can be reproduced Span2000
        # Page 1410 of Span2000
        fp = FluidProperties("nitrogen")

        pressure = 1e5  # 1 bar of pressure

        # T in, gamma out
        # gamma not explicitly in table, but cp/cv is put in here instead
        in_out = ((300, 1.402784445511282, 2), (330, 1.4021113243761996, 2),
                  (450, 1.3956356736242885, 3), (600, 1.3821100917431193, 3),
                  (1000, 1.3411234112341124, 3))

        for T, gamma, places in in_out:
            res_gamma = fp.get_specific_heat_ratio(T=T, p=pressure)
            self.assertAlmostEqual(res_gamma, gamma, places=places)

        # Again but with different pressure
        pressure = 1e6  # 10 bar of pressure

        # T in, gamma out
        # gamma not explicitly in table, but cp/cv is put in here instead
        in_out = ((300, 1.41666666666666672, 2), (330, 1.4126376256582096, 2),
                  (450, 1.400947867298578, 3), (600, 1.3846859238881248, 3),
                  (1000, 1.3419434194341942, 3))

        for T, gamma, places in in_out:
            res_gamma = fp.get_specific_heat_ratio(T=T, p=pressure)
            self.assertAlmostEqual(res_gamma, gamma, places=places)
Beispiel #2
0
def plotGammaCurve():
    fp = FluidProperties("water")
    temperature = np.linspace(start=500, stop=1000, num=200)
    pressure = np.linspace(start=1.0e5, stop=5.0e5, num=3)

    gamma = np.zeros((pressure.size, temperature.size))

    p_iter = np.nditer(pressure, flags=['c_index'])
    T_iter = np.nditer(temperature, flags=['c_index'])

    for p in p_iter:
        i = p_iter.index
        T_iter.reset()
        for T in T_iter:
            j = T_iter.index
            gamma[i, j] = fp.get_specific_heat_ratio(T=float(T), p=float(p))

    plt.figure()
    p_iter.reset()
    for p in p_iter:
        i = p_iter.index
        plt.plot(temperature,
                 gamma[i, :],
                 label="{:1.0f} bar".format(p * 1e-5))

    plt.xlabel("Temperature - $T$ [K]")
    plt.ylabel("Specific heat ratio - $\\gamma$ [-] ")
    plt.grid()
    plt.legend(title="Pressure")
    plt.title("Specific heat ratio of water")
    plt.tight_layout()
Beispiel #3
0
def engine_performance_from_F_and_T(F_desired, p_chamber, T_chamber, AR_exit,
                                    p_back, fp: FluidProperties):
    """ Returns Nozzle Inlet State based on IRT

    Args:
        F_desired (N): Desired thrust
        p_chamber (Pa): Chamber thrust/nozzle inlet pressure
        T_chamber (K): Chamber temperature
        AR_exit (-): A_exit / A_throat
        p_back (Pa): Back pressure
        fp (FluidProperties): Used to access fluid properties

    Raises:
        Exception: Raised when no solution is found for given input

    Returns:
        dict{A_throat [m^2], m_dot [kg/s]}: Throat area and mass flow
    """
    # Default range for temperature for root-finding algorithm
    A_low = 1e-22  # [K]
    A_high = 1e-3  # [K]

    R = fp.get_specific_gas_constant()  # [J/(kg*K)]
    gamma = fp.get_specific_heat_ratio(T_chamber,
                                       p_chamber)  # [-] Specific heat ratio
    # If x is zero, then the desired thrust is found. Gamma is changed depending on temperature as well
    x = lambda A_t: F_desired - get_engine_performance(p_chamber=p_chamber, T_chamber=T_chamber, A_throat=A_t, \
                        AR_exit=AR_exit,p_back=p_back, gamma=gamma,R=R)['thrust']

    root_result = optimize.root_scalar(x, bracket=[A_low, A_high], xtol=1e-12)

    if root_result.converged:
        A_throat = root_result.root  # [m^2]
    else:
        raise Exception("No solution found for given temperature")

    # Now the chamber temperature is known, return the unknown parameters

    ep = get_engine_performance(p_chamber=p_chamber, T_chamber=T_chamber, A_throat=A_throat, \
                        AR_exit=AR_exit,p_back=p_back, gamma=fp.get_specific_heat_ratio(T_chamber,p_chamber),R=R)
    # Add throat area to dictionary
    ep['A_throat'] = A_throat  # This is usually an input for get_engine_performance, but now added to make it one complete solution
    #ep['Isp'] = IRT.effective_ISP(thrust=F_desired,m_dot=ep['m_dot']) # [s] Effective specific impulse

    return ep
Beispiel #4
0
def Rajeev_complete(p_chamber, T_chamber, w_throat, h_throat, throat_roc,
                    AR_exit, p_back, divergence_half_angle,
                    fp: FluidProperties, is_cold_flow):
    """ Function that implements all corrections proposed by Makhan2018

    Args:
        p_chamber (Pa): Chamber pressure
        T_chamber (K): Chamber temperature
        w_throat (m): Throat width
        h_throat (m): Throat heigh (or channel depth)
        throat_roc (m): Throat radius of curvature
        AR_exit (-): Area ratio of nozzle exit area divided by throat area
        p_back (Pa): Back pressure
        divergence_half_angle (rad): Divergence half angle of nozzle 
        fp (FluidProperties): Object to access fluid properties
        is_cold_flow (bool): Reynolds number is adjusted depending on whether the chamber is heated or cooled

    Raises:
        ValueError: Is raised for hot flow, since no verification is done yet on that equation
    """

    # Get the (assumed to be) constant fluid properties
    gamma = fp.get_specific_heat_ratio(T=T_chamber,
                                       p=p_chamber)  # [-] Specific heat ratio
    R = fp.get_specific_gas_constant()  # [J/kg] Specific gas constant
    # Report calculated values for verification and comparison purposes
    print("Gamma: {:1.4f}".format(gamma))
    print("R: {:3.2f} J/kg\n".format(R))

    # Calculate basic peformance parameters
    A_throat = w_throat * h_throat  # [m] Throat area

    ## IDEAL PERFORMANCE
    # First get ideal performance, and check if the nozzle is properly expanded.
    ep = IRT.get_engine_performance(p_chamber=p_chamber,
                                    T_chamber=T_chamber,
                                    A_throat=A_throat,
                                    AR_exit=AR_exit,
                                    p_back=p_back,
                                    gamma=gamma,
                                    R=R)

    # Report ideal performance
    print("Thrust: {:.2f} mN".format(ep['thrust'] * 1e3))
    print("Isp_ideal: {:.1f} s".format(ep['thrust'] / ep['m_dot'] / 9.80655))
    print("Mass flow: {:.3f} mg/s".format(ep['m_dot'] * 1e6))

    m_dot_ideal = ep['m_dot']  # [kg/s] Ideal mass flow
    #F_ideal = ep['thrust'] # [N] Ideal thrust

    ## CALCULATING THE CORRECTION FACTORS

    # Calculate the divergence loss and report it
    CF_divergence_loss = divergence_loss_conical_2D(
        alpha=divergence_half_angle)
    print("\n -- DIVERGENCE LOSS for {:2.2f} deg divergence half-angle".format(
        math.degrees(divergence_half_angle)))
    print(
        "  Divergence loss (2D concical): {:.5f} ".format(CF_divergence_loss))

    # Calculate the viscous loss

    # To determine the Reynolds number at the throat, the hydraulic diameter at the throat and nozzle conditions must be determined
    # Get hydraulic diameter of the nozzle from the wetted perimeter and nozzle area
    wetted_perimeter_throat = 2 * (w_throat + h_throat
                                   )  # [m] Wetted perimeter throat
    Dh_throat = hydraulic_diameter(A=A_throat,
                                   wetted_perimeter=wetted_perimeter_throat
                                   )  # [m] Hydraulic diameter at throat
    p_throat = p_chamber / IRT.pressure_ratio(
        M=1, gamma=gamma)  # [Pa] pressure in throat
    T_throat = T_chamber / IRT.temperature_ratio(
        M=1, gamma=gamma)  # [K] Temperature in throat
    viscosity_throat = fp.get_viscosity(T=T_throat, p=p_throat)
    # Throat reynolds based on ideal mass flow?
    Re_throat = reynolds(m_dot=m_dot_ideal,
                         A=A_throat,
                         D_hydraulic=Dh_throat,
                         viscosity=viscosity_throat)
    if is_cold_flow:
        Re_throat_wall = Reynolds_throat_wall_cold(reynolds_throat=Re_throat)
    else:
        Re_throat_wall = Reynolds_throat_wall_hot(reynolds_throat=Re_throat)
    print("\n-- THROAT CONDITIONS --")
    print("  p = {:2.4f} bar,     T = {:4.2f} K".format(
        p_throat * 1e-5, T_throat))
    print("  mu = {:2.4f} [microPa*s]  Dh = {:3.4f} [microm]".format(
        viscosity_throat * 1e6, Dh_throat * 1e6))
    print(" Reynolds: {:6.6f} ".format(Re_throat))

    CF_viscous_loss = viscous_loss(area_ratio=AR_exit,
                                   reynolds_throat_wall=Re_throat_wall)
    print(" CF_viscous_loss: {:1.5f}".format(CF_viscous_loss))

    # Calculating throat boundary layer loss, which causes a reduction in effective throat area/mass flow
    Cd_throat_boundary_loss = throat_boundary_loss(gamma=gamma,
                                                   reynolds_throat=Re_throat,
                                                   throat_radius=0.5 *
                                                   Dh_throat,
                                                   throat_roc=throat_roc)
    print("\n-- DISCHARGE FACTOR --")
    print("  Throat boundary layer: {:1.4f}".format(Cd_throat_boundary_loss))

    ## APPLYING THE CORRECTION FACTORS
    # Now all these loss factors must be combined into a new "real" thrust
    # The divergence loss only applies to the jet/momentum thrust and not the pressure, so jet thrust is needed
    # This is equal to the exit velocity times corrected mass flow. The returned exit velocity does not include pressure terms!

    # First we must know the corrected mass flow
    m_dot_real = ep['m_dot'] * Cd_throat_boundary_loss  # [kg/s]
    # Secondly, we must know the pressure thrust to add to the jet thrust again
    F_pressure = IRT.pressure_thrust(p_chamber=p_chamber,
                                     p_back=p_back,
                                     A_throat=A_throat,
                                     AR=AR_exit,
                                     gamma=gamma)
    F_divergence = m_dot_real * ep[
        'u_exit'] * CF_divergence_loss + F_pressure  # [N] Thrust decreased by divergence loss, pressure term must be added again, since divergence only applies to jet thrust
    # This jet thrust is then again corrected by viscous losses, which are subtracted from the current CF
    CF_jet_divergence = F_divergence / (
        p_chamber * A_throat
    )  # [-] Thrust coefficient after taking into account discharge factor and divergence loss
    CF_real_final = CF_jet_divergence - CF_viscous_loss  # [-] The final thrust coefficient, also taking into account viscous loss
    F_real = CF_real_final * p_chamber * A_throat  # [N] Real thrust, after taking into account of all the three proposed correction factors

    # Report "real" results
    print("\n === CORRECTED PERFORMANCE PARAMETERS === ")
    print("  Real mass flow: {:3.4f} mg/s".format(m_dot_real * 1e6))
    print("  CF with divergence loss {:1.5f}".format(CF_jet_divergence))
    print("  Real CF: {:1.5f}".format(CF_real_final))
    print("  Real thrust: {:2.4f} mN".format(F_real * 1e3))
    print("  Real Isp: {:3.2f}".format(F_real / m_dot_real / 9.80655))

    return {
        'm_dot_real': m_dot_real,
        'm_dot_ideal': ep['m_dot'],
        'F_real': CF_real_final
    }
Beispiel #5
0
td = thrusters.thruster_data.Cen2010_6

# Design paramaters
fp = FluidProperties(td['propellant']) # Object to access fluid properties with
p_c = 5e5#td['p_inlet'] # [bar] Chamber pressure
T_c = 600#td['T_chamber_guess'] # [K] Chamber temperature
h_channel = td['h_channel'] # [m] Channel/nozzle depth
w_throat = td['w_throat'] # [m] Throat width
AR_exit = 10 #td['AR_exit'] # [-] Exit area ratio
p_back = 0# td['p_back'] # [Pa] Atmospheric pressire

print("Chamber temperature: {:3.2f} K".format(T_c))

# Calculate throat area, and propellant properties
A_throat = h_channel*w_throat # [m^2] Thrpat area
gamma = fp.get_specific_heat_ratio(T=T_c, p=p_c) # [-] Get gamma at specified gas constant
R = fp.get_specific_gas_constant() # [J/(kg*K)] Specific gas constant

ep = IRT.get_engine_performance(p_chamber=p_c, T_chamber=T_c, A_throat=A_throat, AR_exit=AR_exit, p_back=p_back, gamma=gamma, R=R)
print("\n --- IRT predictions --- ")
print("Isp: {:3.2f} s".format(ep['Isp']))
print("Gamma: {:1.3f} ".format(gamma))
print("Mass flow: {:2.3f} mg/s".format(ep['m_dot']*1e6))
print("Thrust: {:2.3f} mN".format(ep['thrust']*1e3))

zeta_CF = td['F']/ep['thrust']
Isp_real = td['F']/td['m_dot']/g0
zeta_Isp = Isp_real/ep['Isp']
discharge_factor = td['m_dot']/ep['m_dot']

print('\n --- Experimental values ---')
Beispiel #6
0
print("Minimum mass flow: {:2.2f} mg/s".format(m_dot_min * 1e6))
print("Maximum mass flow: {:2.2f} mg/s".format(m_dot_max * 1e6))

# Print results of first point for debugging purposes
print("\nResults of first element in each array")
print("------    AR = {:3.1f}    T_c = {:3.2f} K".format(
    AR_exit[0], T_chamber[0]))
print("Throat area: {} m^2".format(A_throat[0][0]))
print("D_h: {} m".format(D_hydraulic_throat[0][0]))
print("Throat width: {} m".format(w_throat[0][0]))
print("Throat height {} ".format(h_channel))
print("Wetted perimeter: {} m".format(wetted_perimeter[0][0]))
print("Mass flow: {} kg/s".format(m_dot[0][0]))
print("Throat velocity: {} m/s".format(u_throat[0][0]))
print("Gamma inlet {}".format(
    fp.get_specific_heat_ratio(T=T_chamber[0], p=p_chamber)))
print("Gamma throat {} ".format(
    fp.get_specific_heat_ratio(T=T_throat[0][0], p=p_throat[0][0])))
print("T_throat: {} K".format(T_throat[0][0]))
print("p_throat: {} Pa".format(p_throat[0][0]))
print("T_exit: {} K".format(T_exit[0][0]))
print("p_exit: {} Pa".format(p_exit[0][0]))

# Alternative calculatoin of Reynolds number
Re_throat_alt = m_dot[0][0] / A_throat[0][0] * D_hydraulic_throat[0][
    0] / mu_throat[0][
        0]  # [-] Alternative calc. of Reynodls number m_dot/A instead of rho*u
print("ALT RE: {}".format(Re_throat_alt))
print("Re_throat {} ".format(Re_throat[0][0]))

fig.legend(title="Exit area ratio $\\frac{A_e}{A_t}$", loc='lower right')