Beispiel #1
0
def MakePosteriorPlot(suite):
    """Plots the posterior marginal distributions for alpha and beta.

    suite: posterior joint distribution of location
    """
    marginal_alpha = suite.Marginal(0)
    marginal_alpha.name = 'alpha'
    marginal_beta = suite.Marginal(1)
    marginal_beta.name = 'beta'

    print('alpha CI', marginal_alpha.CredibleInterval(50))
    print('beta CI', marginal_beta.CredibleInterval(50))

    thinkplot.PrePlot(num=2)

    #thinkplot.Pmf(marginal_alpha)
    #thinkplot.Pmf(marginal_beta)

    thinkplot.Cdf(thinkbayes.MakeCdfFromPmf(marginal_alpha))
    thinkplot.Cdf(thinkbayes.MakeCdfFromPmf(marginal_beta))

    thinkplot.Save('paintball2',
                   xlabel='Distance',
                   ylabel='Prob',
                   loc=4,
                   formats=FORMATS)
Beispiel #2
0
def PlotCoefVariation(suites):
    """Plot the posterior distributions for CV.

    suites: map from label to Pmf of CVs.
    """
    thinkplot.Clf()
    thinkplot.PrePlot(num=2)

    pmfs = {}
    for label, suite in suites.iteritems():
        pmf = CoefVariation(suite)
        print('CV posterior mean', pmf.Mean())
        cdf = thinkbayes.MakeCdfFromPmf(pmf, label)
        thinkplot.Cdf(cdf)

        pmfs[label] = pmf

    thinkplot.Save(root='variability_cv',
                   xlabel='Coefficient of variation',
                   ylabel='Probability')

    print('female bigger',
          thinkbayes.PmfProbGreater(pmfs['female'], pmfs['male']))
    print('male bigger', thinkbayes.PmfProbGreater(pmfs['male'],
                                                   pmfs['female']))
Beispiel #3
0
    def PlotPosteriors(self, other):
        """Plots posterior distributions of efficacy.

        self, other: Sat objects.
        """
        thinkplot.Clf()
        thinkplot.PrePlot(num=2)

        cdf1 = thinkbayes.MakeCdfFromPmf(self, 'posterior %d' % self.score)
        cdf2 = thinkbayes.MakeCdfFromPmf(other, 'posterior %d' % other.score)

        thinkplot.Cdfs([cdf1, cdf2])
        thinkplot.Save(xlabel='efficacy',
                       ylabel='CDF',
                       axis=[0, 4.6, 0.0, 1.0],
                       root='sat_posteriors_eff',
                       formats=['pdf', 'eps'])
Beispiel #4
0
    def CalibrateDifficulty(self):
        """Make a plot showing the model distribution of raw scores."""
        thinkplot.Clf()
        thinkplot.PrePlot(num=2)

        cdf = thinkbayes.MakeCdfFromPmf(self.raw, name='data')
        thinkplot.Cdf(cdf)

        efficacies = thinkbayes.MakeGaussianPmf(0, 1.5, 3)
        pmf = self.MakeRawScoreDist(efficacies)
        cdf = thinkbayes.MakeCdfFromPmf(pmf, name='model')
        thinkplot.Cdf(cdf)

        thinkplot.Save(root='sat_calibrate',
                       xlabel='raw score',
                       ylabel='CDF',
                       formats=['pdf', 'eps'])
Beispiel #5
0
def CH3_4():
    """
    不同先验计算后验
    Train: 先验概率为 均匀分布uniform
    Train2: 先验概率为 指数分布power law

    alpha = 1:
    +-------------------------------------+
    |    先验概率(未归一化)               |
    | 1       1/1              0          |
    | 2       1/2              0          |
    | ...     ...             ...         |
    | 59      1/59             0          |
    | 60      1/60            1/60        |
    | 61      1/61            1/61        |
    | ...     ...                         |
    | 1000    1/1000          1/1000      |  
    +-------------------------------------+
    """
    dataset = [60]
    N = 1000

    def _makePosterior(uppernum, constructor, dataset):
        """
        根据构造器函数和数据集, 生成后验概率suite
        """
        suite = constructor(range(1, uppernum))
        for data in dataset:
            suite.Update(data)
        return suite

    thinkplot.Clf()
    thinkplot.PrePlot(num=2)
    constructors = [Train, Train2]
    labels = ['uniform', 'power law']

    for constructor, label in zip(constructors, labels):
        suite = _makePosterior(N, constructor, dataset)
        suite.name = label
        thinkplot.Pmf(suite)

    thinkplot.Show(title='compare priors', xlabel='Number of trains', ylabel='prob')

    dataset = [60, 30, 90]
    for constructor, label in zip(constructors, labels):
        for n in [500, 1000, 2000]:
            suite = _makePosterior(n, constructor, dataset)
            # 单点估计
            print("%s: n = %d, mu = %.3f" % (label, n, suite.Mean()))
            # 后验概率的置信区间5% - 95% (see CH3_5)
            interval = thinkbayes.Percentile(suite, 5), thinkbayes.Percentile(suite, 95)
            print(interval)

            # CH3_6, 累计分布函数计算百分位数
            if n == 2000:
                cdf = thinkbayes.MakeCdfFromPmf(suite)
                interval = cdf.Percentile(5), cdf.Percentile(95)
                print("MakeCdfFromPmf:", interval)
Beispiel #6
0
def PlotMarginals(suite):
    """Plots marginal distributions from a joint distribution.

    suite: joint distribution of mu and sigma.
    """
    thinkplot.Clf()

    pyplot.subplot(1, 2, 1)
    pmf_m = suite.Marginal(0)
    cdf_m = thinkbayes.MakeCdfFromPmf(pmf_m)
    thinkplot.Cdf(cdf_m)

    pyplot.subplot(1, 2, 2)
    pmf_s = suite.Marginal(1)
    cdf_s = thinkbayes.MakeCdfFromPmf(pmf_s)
    thinkplot.Cdf(cdf_s)

    thinkplot.Show()
Beispiel #7
0
    def GenerateSampleGaps(self, n):
        """Generates a random sample of gaps seen by passengers.

        n: sample size

        Returns: sequence of values
        """
        cdf_zb = thinkbayes.MakeCdfFromPmf(self.pmf_zb)
        sample = cdf_zb.Sample(n)
        return sample
Beispiel #8
0
    def GenerateSampleWaitTimes(self, n):
        """Generates a random sample of wait times.

        n: sample size

        Returns: sequence of values
        """
        cdf_y = thinkbayes.MakeCdfFromPmf(self.pmf_y)
        sample = cdf_y.Sample(n)
        return sample
Beispiel #9
0
def PlotPriorDist(pmf):
    """Plot the prior distribution of p_correct.

    pmf: prior
    """
    thinkplot.Clf()
    thinkplot.PrePlot(num=1)

    cdf1 = thinkbayes.MakeCdfFromPmf(pmf, 'prior')
    thinkplot.Cdf(cdf1)
    thinkplot.Save(root='sat_prior',
                   xlabel='p_correct',
                   ylabel='CDF',
                   formats=['pdf', 'eps'])
Beispiel #10
0
def main(script, *args):
    #random.seed(22)

    lam1 = 1
    lam2 = 1.5

    n = 300
    t = MakeSeries(n, lam1, n, lam2)
    series = Series(t)

    low, high = 0.01, 5.01

    for cons in [Split2, Split3]:
        print cons.__name__
        split = cons(series.n, low, high)
        split.Update(series)
        cdf = thinkbayes.MakeCdfFromPmf(split)
        cdf.name = cons.__name__
        myplot.Cdf(cdf)

    myplot.Show()
Beispiel #11
0
def main():
    ComparePriors()

    dataset = [30, 60, 90]

    thinkplot.Clf()
    thinkplot.PrePlot(num=3)

    for high in [500, 1000, 2000]:
        suite = MakePosterior(high, dataset, Train2)
        print(high, suite.Mean())

    thinkplot.Save(root='train3',
                   xlabel='Number of trains',
                   ylabel='Probability')

    interval = Percentile(suite, 5), Percentile(suite, 95)
    print(interval)

    cdf = thinkbayes.MakeCdfFromPmf(suite)
    interval = cdf.Percentile(5), cdf.Percentile(95)
    print(interval)
Beispiel #12
0
 def addTeam( self, team, this_team, rest_of_league ):
     this_x_cdf = tb.MakeCdfFromPmf( tb.MakePmfFromList( this_team.X ) )
     this_y_cdf = tb.MakeCdfFromPmf( tb.MakePmfFromList( this_team.Y ) )
     other_x_cdf = tb.MakeCdfFromPmf( tb.MakePmfFromList( rest_of_league.X ) )
     other_y_cdf = tb.MakeCdfFromPmf( tb.MakePmfFromList( rest_of_league.Y ) )
     self.addCDFs( team, this_x_cdf, this_y_cdf, other_x_cdf, other_y_cdf )