Beispiel #1
0
 def thinning(self):
     self.img = cv2.imread('{}/01-last_result.png'.format(self.output_path),
                           0)
     ret, img = cv2.threshold(self.img, 90, 255, 0)
     import thinning
     self.img = thinning.guo_hall_thinning(img)
     self.save_img(self.img, '03-skeletonize_result.png', self.output_path)
Beispiel #2
0
def mask_thinning(img):
    """
    returns the skeleton (thinned image) of a mask.
    This uses `thinning.guo_hall_thinning` if available and otherwise falls back
    to a slow python implementation taken from 
    http://opencvpython.blogspot.com/2012/05/skeletonization-using-opencv-python.html
    """
    try:
        import thinning
    except ImportError:
        # thinning module was not available and we use a python implementation
        size = np.size(img)
        skel = np.zeros(img.shape, np.uint8)
         
        kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
        while True:
            eroded = cv2.erode(img, kernel)
            temp = cv2.dilate(eroded, kernel)
            cv2.subtract(img, temp, temp)
            cv2.bitwise_or(skel, temp, skel)
            img = eroded
         
            zeros = size - cv2.countNonZero(img)
            if zeros==size:
                break
    else:
        # use the imported thinning algorithm
        skel = thinning.guo_hall_thinning(img)
        
    return skel
Beispiel #3
0
def skeletonize(road_network: np.ndarray, path: str = "workshop/vectorized.png", largest_component: bool = False):
    ''' Thinning/skeletonization of the road network image to a wired model.
    Input(s):
        road_network: black and white image of the road network (streets in white)
        path: path where the skeletonized image should be saved
        largest_component: if True, only the largest road network component will be kept
    Output(s):
        vectorized: skeletonized image
    '''
    
    assert len(road_network.shape) == 2, 'ERROR: road_network must be grayscale image'
    
    img = cv2.resize(road_network, (road_network.shape[1]//2, road_network.shape[0]//2))
    vectorized = thinning.guo_hall_thinning(img)
    vectorized[vectorized > 100] = 255
    vectorized[vectorized <= 100] = 0
    
    if largest_component:
        try:
            _, labels, stats, _ = cv2.connectedComponentsWithStats(vectorized.copy(), connectivity=8, stats=cv2.CC_STAT_AREA)
            stats = stats[1:]
            main_component = (np.argmax(stats[:,4])+1).astype('int32')
            vectorized = (labels == main_component).astype('uint8')*255
        except:
            'Warning: Skeletonization failed to apply largest_component = True param. Skipping.'
    
    cv2.imwrite(path, vectorized)
    
    return vectorized
Beispiel #4
0
def mask_thinning(img):
    """
    returns the skeleton (thinned image) of a mask.
    This uses `thinning.guo_hall_thinning` if available and otherwise falls back
    to a slow python implementation taken from 
    http://opencvpython.blogspot.com/2012/05/skeletonization-using-opencv-python.html
    """
    try:
        import thinning
    except ImportError:
        # thinning module was not available and we use a python implementation
        size = np.size(img)
        skel = np.zeros(img.shape, np.uint8)

        kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
        while True:
            eroded = cv2.erode(img, kernel)
            temp = cv2.dilate(eroded, kernel)
            cv2.subtract(img, temp, temp)
            cv2.bitwise_or(skel, temp, skel)
            img = eroded

            zeros = size - cv2.countNonZero(img)
            if zeros == size:
                break
    else:
        # use the imported thinning algorithm
        skel = thinning.guo_hall_thinning(img)

    return skel
Beispiel #5
0
def skeletonisation(img, remove_borders=False):

    skeleton = thinning.guo_hall_thinning(img.copy())

    if remove_borders:
        skeleton[0, :] = 0
        skeleton[:, 0] = 0
        skeleton[-1, :] = 0
        skeleton[:, -1] = 0

    return skeleton
Beispiel #6
0
    def process(self, args):
        """
        Guo Hall Thinning.

        Args:
            | *args* : a list of arguments, e.g. image ndarray

        """
        # create a skeleton
        skeleton = guo_hall_thinning(args[0].copy())
        #skeleton = cv2.cvtColor(skeleton, cv2.COLOR_GRAY2BGR)
        self.result['skeleton'] = skeleton
        self.result['img'] = args[0]
Beispiel #7
0
    def process(self, args):
        """
        Guo Hall Thinning.

        Args:
            | *args* : a list of arguments, e.g. image ndarray

        """
        # create a skeleton
        skeleton = thinning.guo_hall_thinning(args[0].copy())
        #skeleton = cv2.cvtColor(skeleton, cv2.COLOR_GRAY2BGR)
        self.result['skeleton'] = skeleton
        self.result['img'] = args[0]
Beispiel #8
0
def features_to_skel(joints, ends, edges, simplify=False):

    if not simplify:
        return joints + ends + edges

    else:
        # dilate to prevent extra mini spurs and help connect gaps
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
        dilated = cv2.dilate(joints + ends, kernel, iterations=1)
        edges_no_overlap = edges.copy()
        edges_no_overlap[dilated > 0] = 0
        skel = cv2.dilate(dilated + edges_no_overlap, kernel, iterations=1)

        return thinning.guo_hall_thinning(skel)
Beispiel #9
0
def mask_thinning(img, method='auto'):
    """
    returns the skeleton (thinned image) of a mask.
    This uses `thinning.guo_hall_thinning` if available and otherwise falls back
    to a slow python implementation taken from 
    http://opencvpython.blogspot.com/2012/05/skeletonization-using-opencv-python.html
    Note that this implementation is not equivalent to guo_hall implementation
    """
    # try importing the thinning module
    try:
        import thinning
    except ImportError:
        thinning = None
    
    # determine the method to use if automatic method is requested
    if method == 'auto':
        if thinning is None:
            method = 'python'
        else:
            method = 'guo-hall'
    
    # do the thinning with the requested method
    if method == 'guo-hall':
        if thinning is None:
            raise ImportError('Using the `guo-hall` method for thinning '
                              'requires the `thinning` module, which could not '
                              'be imported.')
        skel = thinning.guo_hall_thinning(img)
    
    elif method =='python':
        # thinning module was not available and we use a python implementation
        size = np.size(img)
        skel = np.zeros(img.shape, np.uint8)
         
        kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
        while True:
            eroded = cv2.erode(img, kernel)
            temp = cv2.dilate(eroded, kernel)
            cv2.subtract(img, temp, temp)
            cv2.bitwise_or(skel, temp, skel)
            img = eroded
         
            zeros = size - cv2.countNonZero(img)
            if zeros==size:
                break
            
    else:
        raise ValueError('Unknown thinning method `%s`' % method)
        
    return skel
Beispiel #10
0
def mask_thinning(img, method='auto'):
    """
    returns the skeleton (thinned image) of a mask.
    This uses `thinning.guo_hall_thinning` if available and otherwise falls back
    to a slow python implementation taken from 
    http://opencvpython.blogspot.com/2012/05/skeletonization-using-opencv-python.html
    Note that this implementation is not equivalent to guo_hall implementation
    """
    # try importing the thinning module
    try:
        import thinning
    except ImportError:
        thinning = None
    
    # determine the method to use if automatic method is requested
    if method == 'auto':
        if thinning is None:
            method = 'python'
        else:
            method = 'guo-hall'
    
    # do the thinning with the requested method
    if method == 'guo-hall':
        if thinning is None:
            raise ImportError('Using the `guo-hall` method for thinning '
                              'requires the `thinning` module, which could not '
                              'be imported.')
        skel = thinning.guo_hall_thinning(img)
    
    elif method =='python':
        # thinning module was not available and we use a python implementation
        size = np.size(img)
        skel = np.zeros(img.shape, np.uint8)
         
        kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
        while True:
            eroded = cv2.erode(img, kernel)
            temp = cv2.dilate(eroded, kernel)
            cv2.subtract(img, temp, temp)
            cv2.bitwise_or(skel, temp, skel)
            img = eroded
         
            zeros = size - cv2.countNonZero(img)
            if zeros==size:
                break
            
    else:
        raise ValueError('Unknown thinning method `%s`' % method)
        
    return skel
Beispiel #11
0
def colSegmentation(img):

    original_imgage = preprocessing(
        img
    )  #keep original image after preprocess,background white and words black
    thining_image = p.guo_hall_thinning(original_imgage.copy(
    ))  #make thining for image,it make background black and words white

    Boundries = []  #for keep colIndices for crop

    height, width = thining_image.shape

    for colIndex in range(width):  # width(no.of columns)
        whitekPixel = 0
        current_cell = colIndex  #to keep track for sequential col contain lines

        for rowIndex in range(height):  # height(no.of rows in column)
            if thining_image[
                    rowIndex,
                    current_cell] == 255:  #for check below pixel "high priority than other"
                whitekPixel += 1
            elif (current_cell < width - 1
                  and thining_image[rowIndex, current_cell + 1]
                  == 255):  #for check right below pixel and not out of index
                whitekPixel += 1
                current_cell += 1
            elif (current_cell != 0
                  and thining_image[rowIndex, current_cell - 1]
                  == 255):  #for check left below pixel and not out of index
                whitekPixel += 1
                current_cell -= 1

        if whitekPixel >= round(
                height *
                .90):  #check Number of pixel , to know it is col or not
            Boundries.append(colIndex)

    # for thinned image
    for i in range(0, len(Boundries) - 1):
        thining_croped_image = thining_image[0:height,
                                             Boundries[i]:Boundries[i + 1]]
        original_croped_image = original_imgage[0:height,
                                                Boundries[i]:Boundries[i + 1]]
        imgNumber = str(counter())
        if len(thining_croped_image[0]) > 10 and len(
                thining_croped_image) > 10:
            # cv2.imwrite("output\\cols\\" + imgNumber + ".png", original_croped_image)
            wordSegmentaion(thining_croped_image, original_croped_image)
    def process(self, args):
        """
        Guo Hall thinning.
        Use ```zhang_suen_node_detection()``` for node detection.
        Use ```breadth_first_edge_detection()``` for edge detection.

        Args:
            | *args* : a list of arguments, e.g. image ndarray

        """
        # create a skeleton
        skeleton = thinning.guo_hall_thinning(args[0].copy())
        # detect nodes
        graph = zhang_suen_node_detection(skeleton)
        # detect edges
        # graph = breadth_first_edge_detection(skeleton, gray_img, graph)
        graph = breadth_first_edge_detection(skeleton, args[0], graph)
        skeleton = cv2.cvtColor(skeleton, cv2.COLOR_GRAY2BGR)
        self.result['graph'], self.result['img'] = graph, skeleton
Beispiel #13
0
def test():
	i=0
	for w in range(1,5):
		for h in range(1,5):
			arr = numpy.empty(w*h, dtype=numpy.ubyte)
			for o in it.product([0,1],repeat=w*h):
				arr.flat = o
				arr = numpy.reshape(arr,[h,w])
				print i
				# print arr
				i+=1
				# print arr
				# arr[1][1]=0
				brr = thinning.guo_hall_thinning(arr.copy())
				arr2 = guo_hall_thinning(arr)
				if not all((arr2 == brr).flat):
					print "original:",arr
					print "c",brr
					print "python", arr2
					return 
Beispiel #14
0
    def col_segmentation(self, img):

        original_imgage = self.preprocessing(
            img)  # keep original image after preprocess,background white and words black
        thining_image = p.guo_hall_thinning(
            original_imgage.copy())  # make thining for image,it make background black and words white
        height, width = thining_image.shape

        Boundries = self.get_boundaries_indices(thining_image)

        colIndices = []

        # for thinned image
        for col in range(0, len(Boundries) - 1):
            thining_croped_image = thining_image[0:height, Boundries[col]:Boundries[col + 1]]
            original_croped_image = original_imgage[0:height, Boundries[col]:Boundries[col + 1]]
            # imgNumber = str(counter())
            if len(thining_croped_image[0]) > 10 and len(thining_croped_image) > 10:
                colIndices.append((thining_croped_image, original_croped_image))
                # cv2.imwrite("output\\cols\\" + imgNumber + ".png", original_croped_image)
                # wordSegmentaion(thining_croped_image, original_croped_image)
        return colIndices
Beispiel #15
0
    cap = cv2.VideoCapture(0)
    while True:
        ret, img = cap.read()
        gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        gray = cv2.equalizeHist(gray_img)
        horizontal_grad = cv2.Scharr(gray_img, cv2.CV_32F, 1, 0)
        vertical_grad = cv2.Scharr(gray_img, cv2.CV_32F, 0, 1)  # , ksize=3)
        gradient = np.sqrt(np.power(horizontal_grad, 2) +
                           np.power(vertical_grad, 2))
        _, th = cv2.threshold(gradient, 200, 255, cv2.THRESH_BINARY)
        # binary = local_thresholding(th)
        kernel = np.ones((3, 3), np.uint8)
        dilated = cv2.dilate(th, kernel, 1)
        erosion = cv2.erode(dilated, kernel, iterations=1)
        closed = cv2.morphologyEx(erosion, cv2.MORPH_CLOSE, kernel, iterations=1)
        thinned = thinning.guo_hall_thinning(closed.astype(np.uint8))
        #_, binary = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
        edges = cv2.Canny(gray, 50, 150, apertureSize=3)

        lines = cv2.HoughLinesP(thinned, 1, np.pi / 180, 100, 5)
        if lines is not None:
            for x1, y1, x2, y2 in lines[0]:
                cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)

        corners = cv2.goodFeaturesToTrack(gray, 10, 0.01, 25)

        corners = np.float32(corners)

        # print("corners", corners.shape)
        for item in corners:
            x, y = item[0]
Beispiel #16
0
def detect(img, negate=False, robot=False, thin=False):

    if robot:
        MEDIAN_LINE_THRESHOLD = 30  # Robot
    else:
        MEDIAN_LINE_THRESHOLD = 10  # Kitty

    if thin:
        MEDIAN_LINE_THRESHOLD = 1

    left = None
    right = None

    width = img.shape[1]
    height = img.shape[0]

    mask = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
    left_mask = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
    right_mask = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)

    if not negate:
        gray = np.zeros((height, width, 1), dtype=np.uint8)
    else:
        gray = np.full((height, width, 1), 255, dtype=np.uint8)
    cv2.cvtColor(img, cv2.COLOR_RGB2GRAY, gray, 1)
    if negate:
        gray = abs(255 - gray)

    # V2 implementation use equalization of histogram
    # FIXME bad on robot
    # clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    # gray = clahe.apply(gray)

    # Use adaptive thresholding because it is better for difficult lighting condition
    # if robot:
    th2 = cv2.adaptiveThreshold(
        gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 71,
        -15)  # TODO values for ROBOT   this should be ok
    #else:
    # th2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41, -35)  #TODO values for KITTY   maybe use a bit little biass

    if DEBUG:
        cv2.imshow("No erosion", th2)
        cv2.moveWindow("No erosion", 800, 600)
    th2 = cv2.erode(th2, kernel=(11, 11, 1), iterations=4)  # TODO test

    #th2 = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)  #TODO values for KITTY   maybe use a bit little biass

    # ===============================  Calculate base histogram =============================
    #hist_time_start = time.time()
    hist = compute_base_hist(th2)
    if PLOT:
        plt.plot(range(0, th2.shape[1]), hist)
        plt.show()

    # get highest values
    half_width = (width / 2)
    left_max = np.argpartition(hist[0:int(half_width - 1)], -2)[-1:]
    right_max = np.argpartition(hist[int(half_width):int(width - 1)],
                                -2)[-1:] + int(half_width)

    #hist_time_stop = time.time()
    print(left_max, right_max)
    #print("Base Hist time:"+str(hist_time_stop-hist_time_start))

    # =============================== THRESHOLD ========================================
    LINE_THRESHOLD = 0.3  #10000  # 0.3
    left_line = None
    right_line = None

    WINDOW_WIDTH = 100
    WINDOW_HEIGHT = height / 12

    if hist[left_max].squeeze() >= LINE_THRESHOLD:
        left_line = left_max
    if hist[right_max].squeeze() >= LINE_THRESHOLD:
        right_line = right_max

    if left_line is not None and right_line is not None and right_line - left_line < 200:  # TODO search better method
        if hist[left_line] > hist[right_line]:
            right_line = None
        else:
            left_line = None

    #mask_time_start = time.time()
    # # ======================= LEFT LINE
    if left_line is not None:
        update_mask_for_line(th2,
                             left_line,
                             left_mask,
                             WINDOW_WIDTH,
                             WINDOW_HEIGHT,
                             debug_img=img)
    else:
        print("LEFT LINE NONE!!!")

    # # ======================= RIGHT LINE
    if right_line is not None:
        update_mask_for_line(th2,
                             right_line,
                             right_mask,
                             WINDOW_WIDTH,
                             WINDOW_HEIGHT,
                             debug_img=img)
    else:
        print("RIGHT LINE NONE!!!")

    if DEBUG:
        cv2.imshow("th2m", th2)
        cv2.moveWindow("th2m", 10, 700)

    # ================================ MASKING REGIONS ================================

    mask = cv2.bitwise_or(mask, left_mask)
    mask = cv2.bitwise_or(mask, right_mask)

    # if DEBUG:
    #     cv2.imshow("Mask", mask)
    #     cv2.moveWindow("Mask", 200, 10)
    #
    th2 = cv2.bitwise_and(th2, mask)
    # mask_time_end= time.time()
    # print("Mask time:" + str(mask_time_end - mask_time_start))

    if DEBUG:
        cv2.imshow("th2m", th2)
        cv2.moveWindow("th2m", 10, 700)

        cv2.imshow("left_mask", left_mask)
        cv2.moveWindow("left_mask", 10, 700)
        cv2.imshow("right_mask", right_mask)
        cv2.moveWindow("right_mask", 650, 700)

        cv2.imshow("mask", mask)
        cv2.moveWindow("mask", 1500, 700)

    # ================================ POLYNOMIAL FIT ================================
    #thin_time_start = time.time()
    if thin:
        th2 = thinning.guo_hall_thinning(
            th2)  # TODO FIXME faster bat bad quality
    #thin_time_stop = time.time()
    #print("Thin time:" + str(thin_time_stop - thin_time_start))
    if DEBUG:
        cv2.imshow("Thinning", th2)
        cv2.moveWindow("Adapt mean", 100, 100)

    # TODO FIX ME
    #  x_values_left, y_values_left = find_median_line(th2, from_x=0, to_x=int((width/2)-1))
    #  x_values_right, y_values_right = find_median_line(th2, from_x=int(width/2), to_x=int(width-1))
    #median_time_start = time.time()
    x_values_left, y_values_left = find_median_line(
        th2, mask=left_mask, threshold=MEDIAN_LINE_THRESHOLD)
    x_values_right, y_values_right = find_median_line(
        th2, mask=right_mask, threshold=MEDIAN_LINE_THRESHOLD)
    #median_time_stop = time.time()
    #print("Median time:" + str(median_time_stop - median_time_start))
    if DEBUG:
        for i in range(0, len(x_values_left) - 1):
            cv2.circle(img, (int(y_values_left[i]), int(x_values_left[i])),
                       1, (255, 0, 0),
                       thickness=1)
        for i in range(0, len(x_values_right) - 1):
            cv2.circle(img, (int(y_values_right[i]), int(x_values_right[i])),
                       1, (255, 0, 0),
                       thickness=1)

    #fit_time_start = time.time()
    if len(
            x_values_left
    ) > FIT_POINTS_THRESHOLD:  # TODO fix custom threshold for realiable line
        left_fit, residuals, rank, singular_values, rcond = np.polyfit(
            x_values_left, y_values_left, 2, full=True)
        # TODO check residuals for quality
        if residuals[0] / len(x_values_left) < RESIDUALS_THRESHOLD:
            left = left_fit
        print("Residuals: " + str(residuals) + "RES/n_points: " +
              str(residuals / len(x_values_left)))

        if DEBUG:
            for i in range(0, img.shape[0] - 1):
                y_fit = left_fit[0] * (i**2) + left_fit[1] * i + left_fit[2]
                cv2.circle(img, (int(y_fit), i), 1, (0, 0, 255), thickness=1)

    if len(
            x_values_right
    ) > FIT_POINTS_THRESHOLD:  # TODO fix custom threshold for realiable line
        right_fit, residuals, rank, singular_values, rcond = np.polyfit(
            x_values_right, y_values_right, 2, full=True)
        # TODO check residuals for quality
        if residuals[0] / len(x_values_right) < RESIDUALS_THRESHOLD:
            right = right_fit
        print("Residuals: " + str(residuals) + "RES/n_points: " +
              str(residuals / len(x_values_right)))

        if DEBUG:
            for i in range(0, img.shape[0] - 1):
                y_fit = right_fit[0] * (i**2) + right_fit[1] * i + right_fit[2]
                cv2.circle(img, (int(y_fit), i), 1, (0, 0, 255), thickness=1)
    #fit_time_stop = time.time()
    #print("Fit time:" + str(fit_time_stop - fit_time_start))
    if DEBUG:
        pass
        # cv2.circle(img, (int(np.round(left)), img.shape[0] - INTERSECTION_LINE), 5, (0, 0, 255), thickness=2)
        # cv2.circle(img, (int(np.round(right)), img.shape[0] - INTERSECTION_LINE), 5, (0, 0, 255), thickness=2)
        #
        # #  center
        # lines_range = right - left
        # mid = left + lines_range / 2
        # cv2.circle(img, (int(np.round(mid)), img.shape[0] - INTERSECTION_LINE), 7, (0, 255, 255), thickness=2)
        #
        # #  car position
        # cv2.circle(img, (int(np.round(car_position)), img.shape[0] - INTERSECTION_LINE), 5, (14, 34, 255), thickness=5)
        #
        # #cv2.imshow("Gray", gray)
        # cv2.imshow("Otzu", thr)

        # cv2.imshow("Img", img)
        # cv2.imshow("Adapt gaussian", th3)
        # cv2.imshow("Canny", edges)
        # cv2.imshow("CannyDilated", dilate)
        # cv2.imshow("Adapt mean erosion", th2erosion)
        # cv2.imshow("Adapt gaussian erosion", th3erosion)
        # cv2.imshow("erosion", erosion)

        cv2.imshow("Adapt mean", th2)
        cv2.moveWindow("Adapt mean", 1500, 100)
        cv2.waitKey(1)

    print(left)
    print(right)

    # TODO understand if this is good
    # if (left is None and right is not None) or (right is None and left is not None):
    #     left, right = compute_lines_based_on_available(left,right)

    return left, right
Beispiel #17
0
import cv2
import thinning

img = cv2.imread("./example.png")
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thinned = thinning.guo_hall_thinning(img_gray)
cv2.imwrite("./thinned.png", thinned)
Beispiel #18
0
def get_window_3_stroke(im,
                        j,
                        i,
                        window_shape=(100, 100),
                        scale_factor=10,
                        show=False):
    """
    a windowed function for the 3-stroke conversion

    params:
        lines           get_curves(im)
        im              image
        j, i            window coordinates
        window_shape    window dimensions (H, W)
        scale_factor    scale the strokes
        show            display the image and path

    method:
    - use Guo-Hall thinning to reduce to a skeleton
    - get all non-zero points in skeleton
    - use DBSCAN clustering to find clusters of neighbors
        - interpret each cluster as a "stroke"
    - use get_opt_path on each cluster to find best-fit line
    - simplify best-fitting lines with Ramer-Douglas-Peuker algorithm
    - convert lines to strokes

    returns:
        strokes         pen-stroke format
    """
    # preprocess window with Guo-Hall thinning
    window = im[j:j + window_shape[0], i:i + window_shape[1]]
    _, th = cv2.threshold(window, 127, 255, cv2.THRESH_BINARY_INV)
    window = guo_hall_thinning(th)

    points = np.argwhere(window.T != 0)
    # points = np.flip(points, 1)

    if len(points) == 0:
        return

    # segment graph into clusters using DBSCAN algorithm
    db = DBSCAN(eps=5)
    labels = db.fit_predict(points)

    lines = []
    if show:
        plt.imshow(window, 'gray')
    # for each cluster, get the optimal path
    for label in set(labels):
        cluster = points[labels == label]

        if len(cluster) < 3:
            continue

        path = get_opt_path(cluster)
        line = rdp(cluster[path], epsilon=1)

        # line = cluster[path]
        if show:
            x, y = line.T
            plt.plot(x, y)
        # add line to lines
        lines.append(line)

    if show:
        plt.show()

    strokes = lines_to_strokes(lines)

    # normalize strokes
    if len(strokes) > 0:
        strokes[:, 0:2] /= scale_factor
        strokes[0] = [0, 0, 0]

    return strokes
Beispiel #19
0
for file_name in files:
    img = cv2.imread(file_name, cv2.COLOR_BGR2GRAY)
    #print np.min(img)
    img2 = img < 120
    img2 = img2.astype(np.uint8) * 255
    print img2.shape
    #print file_name
    cv2.imshow("Orig", img)

    #blur = cv2.GaussianBlur(img, (5, 5), 0)
    #ret3, th3 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    adap = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                 cv2.THRESH_BINARY_INV, 5, 2)

    kernel = np.ones((2, 2), np.uint8)
    prev = adap.copy()
    cv2.imshow("Previo cierre", adap)
    #for _ in range(3):

    adap = cv2.morphologyEx(adap, cv2.MORPH_DILATE, kernel)

    thin = adap.copy()
    thinning.guo_hall_thinning(thin)
    cv2.imshow("Otsu", adap)
    cv2.imshow("skel guo and hall", thin)
    k = cv2.waitKey(0)
    if k & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()
Beispiel #20
0
def preprocessing(img):
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray_img = cv2.equalizeHist(gray_img)
    horizontal_grad = cv2.Scharr(gray_img, cv2.CV_32F, 1, 0)
    vertical_grad = cv2.Scharr(gray_img, cv2.CV_32F, 0, 1)  # , ksize=3)
    gradient = np.sqrt(np.power(horizontal_grad, 2) +
                       np.power(vertical_grad, 2))
    _, th = cv2.threshold(gradient, 200, 255, cv2.THRESH_BINARY)
    binary = local_thresholding(th)
    kernel = np.ones((3, 3), np.uint8)
    dilated = cv2.dilate(binary, kernel, 1)
    erosion = cv2.erode(dilated, kernel, iterations=2)
    closed = cv2.morphologyEx(erosion, cv2.MORPH_CLOSE, kernel, iterations=1)
    thinned = thinning.guo_hall_thinning(closed.astype(np.uint8))

    contours, hierarchy = cv2.findContours(thinned.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    contours2 = []
    # arc_lengths = []
    for ele in contours:
        if len(ele) > 2:
            retval = cv2.arcLength(ele, False)
            # arc_lengths.append(retval)
            if retval > 160:
                contours2.append(ele)

    trimmed_binary = np.zeros(gray_img.shape, np.uint8)
    cv2.drawContours(trimmed_binary, contours2, -1, (255, 255, 255), 1)
    potential_corners = []
    for i in xrange(1, trimmed_binary.shape[0] - 1):
        for j in xrange(1, trimmed_binary.shape[1] - 1):
            if trimmed_binary[i, j] > 200:
                counter = 0
                if trimmed_binary[i - 1, j - 1] > 200:
                    counter = counter + 1
                if trimmed_binary[i - 1, j + 1] > 200:
                    counter = counter + 1
                if trimmed_binary[i + 1, j - 1] > 200:
                    counter = counter + 1
                if trimmed_binary[i + 1, j + 1] > 200:
                    counter = counter + 1
                if trimmed_binary[i, j + 1] > 200:
                    counter = counter + 1
                if trimmed_binary[i, j - 1] > 200:
                    counter = counter + 1
                if trimmed_binary[i + 1, j] > 200:
                    counter = counter + 1
                if trimmed_binary[i - 1, j] > 200:
                    counter = counter + 1
                if counter > 2:
                    potential_corners.append([j, i])
    p_corners = np.array(potential_corners)
    for ele in p_corners:
        cv2.circle(img, tuple(ele), 2, (0, 0, 255), 2)

    plt.subplot(2, 2, 1)
    plt.imshow(img, cmap='gray')
    plt.subplot(2, 2, 2)
    plt.imshow(thinned, cmap='gray')
    plt.subplot(2, 2, 3)
    plt.imshow(trimmed_binary, cmap='gray')
    plt.subplot(2, 2, 4)
    plt.imshow(gradient, cmap='gray')
    plt.show()
            groupedList.append(tempLst)
            tempLst = []
            tempLst.append(arr[i])

        if (i == len(arr) - 1):
            groupedList.append(tempLst)
    return groupedList


#Read the image, remove the noise, threshold the image to convert the image in binary format and invert it
img = cv2.imread("hw.png", 0)
img = cv2.fastNlMeansDenoising(img, h=20)
img = cv2.threshold(img, 160, 255, cv2.THRESH_BINARY_INV)[1]

#Thin the image using the guo_hall thinning algorithm
img = thinning.guo_hall_thinning(img.copy())

#Keep track of the column indices with no white pixels and columns with one white pixel(ligature)
zerosLst = []
onesLst = []
for i in range(img.shape[1]):
    if (np.sum(img[:, i]) == 0):
        zerosLst.append(i)
    elif (np.sum(img[:, i]) == 255):
        onesLst.append(i)

#Group nearby columns from into a list(from 1-D list to list of lists)
zerosLst = groupCols(zerosLst)
onesLst = groupCols(onesLst)

#Get the final indices of columns
import cv2
import thinning

img = cv2.imread("./input1.JPG")
constant = cv2.copyMakeBorder(
    img, 2, 2, 2, 2, cv2.BORDER_CONSTANT
)  # adding 1 pixel thick border since image touches the existing
# boundary
img_gray = cv2.cvtColor(constant, cv2.COLOR_BGR2GRAY)
thinned = thinning.guo_hall_thinning(img_gray)
cv2.imwrite("skelta/thinned2.png", thinned)

# this is the most suitable code for the project