def loadinputdata(self, datafile, savefile=None): rdd = load(self.sc, datafile, preprocessmethod="dff-percentile") self.rdd = rdd self.datafile = datafile if savefile is not None: self.savefile = savefile self.modelfile = os.path.join(os.path.split(self.datafile)[0], 'stim')
def test_ica(self): ica_data = os.path.join(DATA_DIR, "ica.txt") ica_results = os.path.join(DATA_DIR, "results/ica") data = load(self.sc, ica_data, "raw") w, sigs = ica(data, 4, 4, svdmethod="direct", seed=1) w_true = loadmat(os.path.join(ica_results, "w.mat"))["w"] sigs_true = loadmat(os.path.join(ica_results, "sigs.mat"))["sigs"] tol = 10e-02 assert allclose(w, w_true, atol=tol) assert allclose(transpose(sigs.map(lambda (_, v): v).collect()), sigs_true, atol=tol)
def test_ica(self): ica_data = os.path.join(DATA_DIR, "ica.txt") ica_results = os.path.join(DATA_DIR, "results/ica") data = load(self.sc, ica_data, "raw") w, sigs = ica(data, 4, 4, svdmethod="direct", seed=1) w_true = loadmat(os.path.join(ica_results, "w.mat"))["w"] sigs_true = loadmat(os.path.join(ica_results, "sigs.mat"))["sigs"] tol = 10e-02 assert (allclose(w, w_true, atol=tol)) assert (allclose(transpose(sigs.map(lambda (_, v): v).collect()), sigs_true, atol=tol))
method = SigProcessingMethod.load("stats", statistic=statistic) vals = method.calc(data) return vals if __name__ == "__main__": parser = argparse.ArgumentParser(description="compute summary statistics on time series data") parser.add_argument("master", type=str) parser.add_argument("datafile", type=str) parser.add_argument("outputdir", type=str) parser.add_argument("mode", choices=("mean", "median", "std", "norm"), help="which summary statistic") parser.add_argument("--preprocess", choices=("raw", "dff", "dff-highpass", "sub"), default="raw", required=False) args = parser.parse_args() egg = glob.glob(os.path.join(os.environ["THUNDER_EGG"], "*.egg")) sc = SparkContext(args.master, "ref", pyFiles=egg) data = load(sc, args.datafile, args.preprocess).cache() vals = stats(data, args.mode) outputdir = (args.outputdir + "-stats",) outputdir = args.outputdir + "-stats" if not os.path.exists(outputdir): os.makedirs(outputdir) save(vals, outputdir, "stats_" + args.mode, "matlab")
return corr if __name__ == "__main__": parser = argparse.ArgumentParser( description="correlate time series with neighbors") parser.add_argument("master", type=str) parser.add_argument("datafile", type=str) parser.add_argument("outputdir", type=str) parser.add_argument("sz", type=int) parser.add_argument("--preprocess", choices=("raw", "dff", "dff-highpass", "sub"), default="raw", required=False) args = parser.parse_args() sc = SparkContext(args.master, "localcorr") if args.master != "local": egg = glob.glob(os.path.join(os.environ['THUNDER_EGG'], "*.egg")) sc.addPyFile(egg[0]) data = load(sc, args.datafile, args.preprocess).cache() corrs = localcorr(data, args.sz) outputdir = args.outputdir + "-localcorr" save(corrs, outputdir, "corr", "matlab")
parser.add_argument("--tuningmode", choices=("circular", "gaussian"), default="gaussian", required=False, help="form of tuning curve") parser.add_argument("--basename", type=str, default="-", required=False) parser.add_argument("--stim", type=str, default="-", required=False) args = parser.parse_args() sc = SparkContext(args.master, "myscript") if args.master != "local": egg = glob.glob(os.path.join(os.environ['THUNDER_EGG'], "*.egg")) sc.addPyFile(egg[0]) # load data file datafile = os.path.join(args.datafolder, args.imagename) outputdir = os.path.join(args.datafolder,"spark") data = load(sc, datafile, args.preprocess, 4) # drop key data = data.map(lambda (k, v): (k[0:3], v)) data.cache() # compute mean map vals = stats(data,"mean") save(vals,outputdir,"mean_vals","matlab") # compute local cor if args.neighbourhood != 0: cor = localcorr(data,args.neighbourhood) save(cor,outputdir,"local_corr","matlab") # if stim argument is not default