Beispiel #1
0
    def pool(self, y):
        print ("pool")
        '''apply pooling to unpooled output'''
        if self.vis_shape is None:
            self.vis_shape = test_shape(y)[-2:]
        (p_y, p_inds) = pooling.maxpool2d(y, winsize=self.poolsize,stride=self.poolstride)

        return (p_y, p_inds)
    def define_coarse_stack(self, imnet_feats):
        full1 = self.create_unit('full1', ninput=test_shape(imnet_feats)[1])
        f_1 = relu(full1.infer(imnet_feats))
        f_1_drop = random_zero(f_1, 0.5)
        f_1_mean = 0.5 * f_1

        full2 = self.create_unit('full2', ninput=test_shape(f_1_mean)[1])

        f_2_drop = full2.infer(f_1_drop)
        f_2_mean = full2.infer(f_1_mean)

        # prediction
        (h, w) = self.output_size
        pred_drop = f_2_drop.reshape((self.bsize, h, w))
        pred_mean = f_2_mean.reshape((self.bsize, h, w))

        self.coarse = MachinePart(locals())
    def pool(self, y):
        print "pool"
        '''apply pooling to unpooled output'''
        if self.vis_shape is None:
            self.vis_shape = test_shape(y)[-2:]
        (p_y, p_inds) = pooling.maxpool2d(y, winsize=self.poolsize,stride=self.poolstride)

        return (p_y, p_inds)
Beispiel #4
0
    def define_coarse_stack(self, imnet_feats):
        full1 = self.create_unit('full1', ninput=test_shape(imnet_feats)[1])
        f_1 = relu(full1.infer(imnet_feats))
        f_1_drop = random_zero(f_1, 0.5)
        f_1_mean = 0.5 * f_1

        full2 = self.create_unit('full2', ninput=test_shape(f_1_mean)[1])

        f_2_drop = full2.infer(f_1_drop)
        f_2_mean = full2.infer(f_1_mean)

        # prediction
        (h, w) = self.coarse_output_size
        pred_drop = f_2_drop.reshape((self.bsize, h, w))
        pred_mean = f_2_mean.reshape((self.bsize, h, w))

        self.coarse = MachinePart(locals())
Beispiel #5
0
def conv_theano_mm(x, k, border_mode, transpose=False, stride=1):
    #输入图片x: (bsize, xchan, h, w)
    #k为滤波器:(nfilt, xchan, filt_h, filt_w)

    (xh, xw) = test_shape(x)[-2:]
    (kh, kw) = test_shape(k)[-2:]

    if border_mode == 'valid':
        pad = (0, 0)
    elif border_mode == 'same':  #卷积后的图片大小与原图片的大小相同,因此左右两边都要加上卷积核宽度的一半
        pad = (kh // 2, kw // 2)
    elif border_mode == 'full':
        pad = (kh - 1, kw - 1)
    else:
        raise ValueError(border_mode)

    if stride != 1 and not transpose and _mm_enable_compatibility_padding:
        print 'True'
        # semi-compatibility with cudaconv
        # cudaconv strided convs go one filter tile past the end at the
        # bottom/right.  Get the same size with some extra padding if needed.
        # The padding is centered, so this results in up to a half-stride image
        # shift to the right, not exactly the same as before.
        if border_mode != 'valid':
            raise NotImplementedError()
        old_h = np.ceil((xh - kh) / float(stride)) * stride + kh
        old_w = np.ceil((xw - kw) / float(stride)) * stride + kw
        pad = (int(np.ceil(
            (old_h - xh) / 2.0)), int(np.ceil((old_w - xw) / 2.0)))

    if transpose:
        (ph, pw) = pad
        bottom_shape = T.constant(
            np.array((stride * (xh - 1) - 2 * ph + kh,
                      stride * (xw - 1) - 2 * pw + kw)))
        res = theano.sandbox.cuda.blas.GpuCorrMM_gradInputs(
                        pad=pad,
                        subsample=(stride, stride)) \
                    (k, x, shape=bottom_shape)
    else:
        res = theano.sandbox.cuda.blas.GpuCorrMM(
                        pad=pad,
                        subsample=(stride, stride)) \
                    (x, k)
    return res
def conv_theano_mm(x, k, border_mode, transpose=False, stride=1):
    #输入图片x: (bsize, xchan, h, w)
    #k为滤波器:(nfilt, xchan, filt_h, filt_w)

    (xh, xw) = test_shape(x)[-2:]
    (kh, kw) = test_shape(k)[-2:]

    if border_mode == 'valid':
        pad = (0,0)
    elif border_mode == 'same':#卷积后的图片大小与原图片的大小相同,因此左右两边都要加上卷积核宽度的一半
        pad = (kh // 2, kw // 2)
    elif border_mode == 'full':
        pad = (kh - 1, kw - 1)
    else:
        raise ValueError(border_mode)

    if stride != 1 and not transpose and _mm_enable_compatibility_padding:
        print 'True'
        # semi-compatibility with cudaconv
        # cudaconv strided convs go one filter tile past the end at the
        # bottom/right.  Get the same size with some extra padding if needed.
        # The padding is centered, so this results in up to a half-stride image
        # shift to the right, not exactly the same as before.
        if border_mode != 'valid':
            raise NotImplementedError()
        old_h = np.ceil((xh - kh) / float(stride)) * stride + kh
        old_w = np.ceil((xw - kw) / float(stride)) * stride + kw
        pad = (int(np.ceil((old_h - xh) / 2.0)),
               int(np.ceil((old_w - xw) / 2.0)))

    if transpose:
        (ph, pw) = pad
        bottom_shape = T.constant(np.array((stride * (xh - 1) - 2*ph + kh,
                                            stride * (xw - 1) - 2*pw + kw)))
        res = theano.sandbox.cuda.blas.GpuCorrMM_gradInputs(
                        pad=pad,
                        subsample=(stride, stride)) \
                    (k, x, shape=bottom_shape)
    else:
        res = theano.sandbox.cuda.blas.GpuCorrMM(
                        pad=pad,
                        subsample=(stride, stride)) \
                    (x, k)
    return res
    def define_cost(self, pred, y0, m0):
        bsize = self.bsize
        npix = int(np.prod(test_shape(y0)[1:]))
        y0_target = y0.reshape((self.bsize, npix))
        y0_mask = m0.reshape((self.bsize, npix))
        pred = pred.reshape((self.bsize, npix))

        p = pred * y0_mask
        t = y0_target * y0_mask

        d = (p - t)

        nvalid_pix = T.sum(y0_mask, axis=1)
        depth_cost = (T.sum(nvalid_pix * T.sum(d**2, axis=1))
                         - 0.5*T.sum(T.sum(d, axis=1)**2)) \
                     / T.maximum(T.sum(nvalid_pix**2), 1)

        return depth_cost
Beispiel #8
0
    def define_cost(self, pred, y0, m0):
        bsize = self.bsize
        npix = int(np.prod(test_shape(y0)[1:]))
        y0_target = y0.reshape((self.bsize, npix))
        y0_mask = m0.reshape((self.bsize, npix))
        pred = pred.reshape((self.bsize, npix))

        p = pred * y0_mask
        t = y0_target * y0_mask

        d = (p - t)

        nvalid_pix = T.sum(y0_mask, axis=1)
        depth_cost = (T.sum(nvalid_pix * T.sum(d**2, axis=1))
                         - 0.5*T.sum(T.sum(d, axis=1)**2)) \
                     / T.maximum(T.sum(nvalid_pix**2), 1)

        return depth_cost