Beispiel #1
0
class Collector(object):
    """The :class:`~tianshou.data.Collector` enables the policy to interact
    with different types of environments conveniently.

    :param policy: an instance of the :class:`~tianshou.policy.BasePolicy`
        class.
    :param env: a ``gym.Env`` environment or an instance of the
        :class:`~tianshou.env.BaseVectorEnv` class.
    :param buffer: an instance of the :class:`~tianshou.data.ReplayBuffer`
        class, or a list of :class:`~tianshou.data.ReplayBuffer`. If set to
        ``None``, it will automatically assign a small-size
        :class:`~tianshou.data.ReplayBuffer`.
    :param function preprocess_fn: a function called before the data has been
        added to the buffer, see issue #42, defaults to ``None``.
    :param int stat_size: for the moving average of recording speed, defaults
        to 100.

    The ``preprocess_fn`` is a function called before the data has been added
    to the buffer with batch format, which receives up to 7 keys as listed in
    :class:`~tianshou.data.Batch`. It will receive with only ``obs`` when the
    collector resets the environment. It returns either a dict or a
    :class:`~tianshou.data.Batch` with the modified keys and values. Examples
    are in "test/base/test_collector.py".

    Example:
    ::

        policy = PGPolicy(...)  # or other policies if you wish
        env = gym.make('CartPole-v0')
        replay_buffer = ReplayBuffer(size=10000)
        # here we set up a collector with a single environment
        collector = Collector(policy, env, buffer=replay_buffer)

        # the collector supports vectorized environments as well
        envs = VectorEnv([lambda: gym.make('CartPole-v0') for _ in range(3)])
        buffers = [ReplayBuffer(size=5000) for _ in range(3)]
        # you can also pass a list of replay buffer to collector, for multi-env
        # collector = Collector(policy, envs, buffer=buffers)
        collector = Collector(policy, envs, buffer=replay_buffer)

        # collect at least 3 episodes
        collector.collect(n_episode=3)
        # collect 1 episode for the first env, 3 for the third env
        collector.collect(n_episode=[1, 0, 3])
        # collect at least 2 steps
        collector.collect(n_step=2)
        # collect episodes with visual rendering (the render argument is the
        #   sleep time between rendering consecutive frames)
        collector.collect(n_episode=1, render=0.03)

        # sample data with a given number of batch-size:
        batch_data = collector.sample(batch_size=64)
        # policy.learn(batch_data)  # btw, vanilla policy gradient only
        #   supports on-policy training, so here we pick all data in the buffer
        batch_data = collector.sample(batch_size=0)
        policy.learn(batch_data)
        # on-policy algorithms use the collected data only once, so here we
        #   clear the buffer
        collector.reset_buffer()

    For the scenario of collecting data from multiple environments to a single
    buffer, the cache buffers will turn on automatically. It may return the
    data more than the given limitation.

    .. note::

        Please make sure the given environment has a time limitation.
    """

    def __init__(self,
                 policy: BasePolicy,
                 env: Union[gym.Env, BaseVectorEnv],
                 buffer: Optional[Union[ReplayBuffer, List[ReplayBuffer]]]
                 = None,
                 preprocess_fn: Callable[[Any], Union[dict, Batch]] = None,
                 stat_size: Optional[int] = 100,
                 **kwargs) -> None:
        super().__init__()
        self.env = env
        self.env_num = 1
        self.collect_time = 0
        self.collect_step = 0
        self.collect_episode = 0
        self.buffer = buffer
        self.policy = policy
        self.preprocess_fn = preprocess_fn
        # if preprocess_fn is None:
        #     def _prep(**kwargs):
        #         return kwargs
        #     self.preprocess_fn = _prep
        self.process_fn = policy.process_fn
        self._multi_env = isinstance(env, BaseVectorEnv)
        self._multi_buf = False  # True if buf is a list
        # need multiple cache buffers only if storing in one buffer
        self._cached_buf = []
        if self._multi_env:
            self.env_num = len(env)
            if isinstance(self.buffer, list):
                assert len(self.buffer) == self.env_num, \
                    'The number of data buffer does not match the number of ' \
                    'input env.'
                self._multi_buf = True
            elif isinstance(self.buffer, ReplayBuffer) or self.buffer is None:
                self._cached_buf = [
                    ListReplayBuffer() for _ in range(self.env_num)]
            else:
                raise TypeError('The buffer in data collector is invalid!')
        self.stat_size = stat_size
        self.reset()

    def reset(self) -> None:
        """Reset all related variables in the collector."""
        self.reset_env()
        self.reset_buffer()
        # state over batch is either a list, an np.ndarray, or a torch.Tensor
        self.state = None
        self.step_speed = MovAvg(self.stat_size)
        self.episode_speed = MovAvg(self.stat_size)
        self.collect_step = 0
        self.collect_episode = 0
        self.collect_time = 0

    def reset_buffer(self) -> None:
        """Reset the main data buffer."""
        if self._multi_buf:
            for b in self.buffer:
                b.reset()
        else:
            if self.buffer is not None:
                self.buffer.reset()

    def get_env_num(self) -> int:
        """Return the number of environments the collector have."""
        return self.env_num

    def reset_env(self) -> None:
        """Reset all of the environment(s)' states and reset all of the cache
        buffers (if need).
        """
        self._obs = self.env.reset()
        if not self._multi_env:
            self._obs = self._make_batch(self._obs)
        if self.preprocess_fn:
            self._obs = self.preprocess_fn(obs=self._obs).get('obs', self._obs)
        self._act = self._rew = self._done = self._info = None
        if self._multi_env:
            self.reward = np.zeros(self.env_num)
            self.length = np.zeros(self.env_num)
        else:
            self.reward, self.length = 0, 0
        for b in self._cached_buf:
            b.reset()

    def seed(self, seed: Optional[Union[int, List[int]]] = None) -> None:
        """Reset all the seed(s) of the given environment(s)."""
        if hasattr(self.env, 'seed'):
            return self.env.seed(seed)

    def render(self, **kwargs) -> None:
        """Render all the environment(s)."""
        if hasattr(self.env, 'render'):
            return self.env.render(**kwargs)

    def close(self) -> None:
        """Close the environment(s)."""
        if hasattr(self.env, 'close'):
            self.env.close()

    def _make_batch(self, data: Any) -> np.ndarray:
        """Return [data]."""
        if isinstance(data, np.ndarray):
            return data[None]
        else:
            return np.array([data])

    def _reset_state(self, id: Union[int, List[int]]) -> None:
        """Reset self.state[id]."""
        if self.state is None:
            return
        if isinstance(self.state, list):
            self.state[id] = None
        elif isinstance(self.state, (dict, Batch)):
            for k in self.state.keys():
                if isinstance(self.state[k], list):
                    self.state[k][id] = None
                elif isinstance(self.state[k], (torch.Tensor, np.ndarray)):
                    self.state[k][id] = 0
        elif isinstance(self.state, (torch.Tensor, np.ndarray)):
            self.state[id] = 0

    def collect(self,
                n_step: int = 0,
                n_episode: Union[int, List[int]] = 0,
                random: bool = False,
                render: Optional[float] = None,
                log_fn: Optional[Callable[[dict], None]] = None
                ) -> Dict[str, float]:
        """Collect a specified number of step or episode.

        :param int n_step: how many steps you want to collect.
        :param n_episode: how many episodes you want to collect (in each
            environment).
        :type n_episode: int or list
        :param bool random: whether to use random policy for collecting data,
            defaults to ``False``.
        :param float render: the sleep time between rendering consecutive
            frames, defaults to ``None`` (no rendering).
        :param function log_fn: a function which receives env info, typically
            for tensorboard logging.

        .. note::

            One and only one collection number specification is permitted,
            either ``n_step`` or ``n_episode``.

        :return: A dict including the following keys

            * ``n/ep`` the collected number of episodes.
            * ``n/st`` the collected number of steps.
            * ``v/st`` the speed of steps per second.
            * ``v/ep`` the speed of episode per second.
            * ``rew`` the mean reward over collected episodes.
            * ``len`` the mean length over collected episodes.
        """
        warning_count = 0
        if not self._multi_env:
            n_episode = np.sum(n_episode)
        start_time = time.time()
        assert sum([(n_step != 0), (n_episode != 0)]) == 1, \
            "One and only one collection number specification is permitted!"
        cur_step = 0
        cur_episode = np.zeros(self.env_num) if self._multi_env else 0
        reward_sum = 0
        length_sum = 0
        while True:
            if warning_count >= 100000:
                warnings.warn(
                    'There are already many steps in an episode. '
                    'You should add a time limitation to your environment!',
                    Warning)
            batch = Batch(
                obs=self._obs, act=self._act, rew=self._rew,
                done=self._done, obs_next=None, info=self._info,
                policy=None)
            if random:
                action_space = self.env.action_space
                if isinstance(action_space, list):
                    result = Batch(act=[a.sample() for a in action_space])
                else:
                    result = Batch(act=self._make_batch(action_space.sample()))
            else:
                with torch.no_grad():
                    result = self.policy(batch, self.state)
            self.state = result.get('state', None)
            self._policy = to_numpy(result.policy) \
                if hasattr(result, 'policy') else [{}] * self.env_num
            self._act = to_numpy(result.act)
            obs_next, self._rew, self._done, self._info = self.env.step(
                self._act if self._multi_env else self._act[0])
            if not self._multi_env:
                obs_next = self._make_batch(obs_next)
                self._rew = self._make_batch(self._rew)
                self._done = self._make_batch(self._done)
                self._info = self._make_batch(self._info)
            if log_fn:
                log_fn(self._info if self._multi_env else self._info[0])
            if render:
                self.env.render()
                if render > 0:
                    time.sleep(render)
            self.length += 1
            self.reward += self._rew
            if self.preprocess_fn:
                result = self.preprocess_fn(
                    obs=self._obs, act=self._act, rew=self._rew,
                    done=self._done, obs_next=obs_next, info=self._info,
                    policy=self._policy)
                self._obs = result.get('obs', self._obs)
                self._act = result.get('act', self._act)
                self._rew = result.get('rew', self._rew)
                self._done = result.get('done', self._done)
                obs_next = result.get('obs_next', obs_next)
                self._info = result.get('info', self._info)
                self._policy = result.get('policy', self._policy)
            if self._multi_env:
                for i in range(self.env_num):
                    data = {
                        'obs': self._obs[i], 'act': self._act[i],
                        'rew': self._rew[i], 'done': self._done[i],
                        'obs_next': obs_next[i], 'info': self._info[i],
                        'policy': self._policy[i]}
                    if self._cached_buf:
                        warning_count += 1
                        self._cached_buf[i].add(**data)
                    elif self._multi_buf:
                        warning_count += 1
                        self.buffer[i].add(**data)
                        cur_step += 1
                    else:
                        warning_count += 1
                        if self.buffer is not None:
                            self.buffer.add(**data)
                        cur_step += 1
                    if self._done[i]:
                        if n_step != 0 or np.isscalar(n_episode) or \
                                cur_episode[i] < n_episode[i]:
                            cur_episode[i] += 1
                            reward_sum += self.reward[i]
                            length_sum += self.length[i]
                            if self._cached_buf:
                                cur_step += len(self._cached_buf[i])
                                if self.buffer is not None:
                                    self.buffer.update(self._cached_buf[i])
                        self.reward[i], self.length[i] = 0, 0
                        if self._cached_buf:
                            self._cached_buf[i].reset()
                        self._reset_state(i)
                if sum(self._done):
                    obs_next = self.env.reset(np.where(self._done)[0])
                    if self.preprocess_fn:
                        obs_next = self.preprocess_fn(obs=obs_next).get(
                            'obs', obs_next)
                if n_episode != 0:
                    if isinstance(n_episode, list) and \
                            (cur_episode >= np.array(n_episode)).all() or \
                            np.isscalar(n_episode) and \
                            cur_episode.sum() >= n_episode:
                        break
            else:
                if self.buffer is not None:
                    self.buffer.add(
                        self._obs[0], self._act[0], self._rew[0],
                        self._done[0], obs_next[0], self._info[0],
                        self._policy[0])
                cur_step += 1
                if self._done:
                    cur_episode += 1
                    reward_sum += self.reward[0]
                    length_sum += self.length
                    self.reward, self.length = 0, 0
                    self.state = None
                    obs_next = self._make_batch(self.env.reset())
                    if self.preprocess_fn:
                        obs_next = self.preprocess_fn(obs=obs_next).get(
                            'obs', obs_next)
                if n_episode != 0 and cur_episode >= n_episode:
                    break
            if n_step != 0 and cur_step >= n_step:
                break
            self._obs = obs_next
        self._obs = obs_next
        if self._multi_env:
            cur_episode = sum(cur_episode)
        duration = max(time.time() - start_time, 1e-9)
        self.step_speed.add(cur_step / duration)
        self.episode_speed.add(cur_episode / duration)
        self.collect_step += cur_step
        self.collect_episode += cur_episode
        self.collect_time += duration
        if isinstance(n_episode, list):
            n_episode = np.sum(n_episode)
        else:
            n_episode = max(cur_episode, 1)
        return {
            'n/ep': cur_episode,
            'n/st': cur_step,
            'v/st': self.step_speed.get(),
            'v/ep': self.episode_speed.get(),
            'rew': reward_sum / n_episode,
            'len': length_sum / n_episode,
        }

    def sample(self, batch_size: int) -> Batch:
        """Sample a data batch from the internal replay buffer. It will call
        :meth:`~tianshou.policy.BasePolicy.process_fn` before returning
        the final batch data.

        :param int batch_size: ``0`` means it will extract all the data from
            the buffer, otherwise it will extract the data with the given
            batch_size.
        """
        if self._multi_buf:
            if batch_size > 0:
                lens = [len(b) for b in self.buffer]
                total = sum(lens)
                batch_index = np.random.choice(
                    len(self.buffer), batch_size, p=np.array(lens) / total)
            else:
                batch_index = np.array([])
            batch_data = Batch()
            for i, b in enumerate(self.buffer):
                cur_batch = (batch_index == i).sum()
                if batch_size and cur_batch or batch_size <= 0:
                    batch, indice = b.sample(cur_batch)
                    batch = self.process_fn(batch, b, indice)
                    batch_data.append(batch)
        else:
            batch_data, indice = self.buffer.sample(batch_size)
            batch_data = self.process_fn(batch_data, self.buffer, indice)
        return batch_data
class Collector(object):
    """The :class:`~tianshou.data.Collector` enables the policy to interact
    with different types of environments conveniently.

    :param policy: an instance of the :class:`~tianshou.policy.BasePolicy`
        class.
    :param env: a ``gym.Env`` environment or an instance of the
        :class:`~tianshou.env.BaseVectorEnv` class.
    :param buffer: an instance of the :class:`~tianshou.data.ReplayBuffer`
        class, or a list of :class:`~tianshou.data.ReplayBuffer`. If set to
        ``None``, it will automatically assign a small-size
        :class:`~tianshou.data.ReplayBuffer`.
    :param function preprocess_fn: a function called before the data has been
        added to the buffer, see issue #42 and :ref:`preprocess_fn`, defaults
        to ``None``.
    :param int stat_size: for the moving average of recording speed, defaults
        to 100.
    :param BaseNoise action_noise: add a noise to continuous action. Normally
        a policy already has a noise param for exploration in training phase,
        so this is recommended to use in test collector for some purpose.
    :param function reward_metric: to be used in multi-agent RL. The reward to
        report is of shape [agent_num], but we need to return a single scalar
        to monitor training. This function specifies what is the desired
        metric, e.g., the reward of agent 1 or the average reward over all
        agents. By default, the behavior is to select the reward of agent 1.

    The ``preprocess_fn`` is a function called before the data has been added
    to the buffer with batch format, which receives up to 7 keys as listed in
    :class:`~tianshou.data.Batch`. It will receive with only ``obs`` when the
    collector resets the environment. It returns either a dict or a
    :class:`~tianshou.data.Batch` with the modified keys and values. Examples
    are in "test/base/test_collector.py".

    Example:
    ::

        policy = PGPolicy(...)  # or other policies if you wish
        env = gym.make('CartPole-v0')
        replay_buffer = ReplayBuffer(size=10000)
        # here we set up a collector with a single environment
        collector = Collector(policy, env, buffer=replay_buffer)

        # the collector supports vectorized environments as well
        envs = VectorEnv([lambda: gym.make('CartPole-v0') for _ in range(3)])
        buffers = [ReplayBuffer(size=5000) for _ in range(3)]
        # you can also pass a list of replay buffer to collector, for multi-env
        # collector = Collector(policy, envs, buffer=buffers)
        collector = Collector(policy, envs, buffer=replay_buffer)

        # collect at least 3 episodes
        collector.collect(n_episode=3)
        # collect 1 episode for the first env, 3 for the third env
        collector.collect(n_episode=[1, 0, 3])
        # collect at least 2 steps
        collector.collect(n_step=2)
        # collect episodes with visual rendering (the render argument is the
        #   sleep time between rendering consecutive frames)
        collector.collect(n_episode=1, render=0.03)

        # sample data with a given number of batch-size:
        batch_data = collector.sample(batch_size=64)
        # policy.learn(batch_data)  # btw, vanilla policy gradient only
        #   supports on-policy training, so here we pick all data in the buffer
        batch_data = collector.sample(batch_size=0)
        policy.learn(batch_data)
        # on-policy algorithms use the collected data only once, so here we
        #   clear the buffer
        collector.reset_buffer()

    For the scenario of collecting data from multiple environments to a single
    buffer, the cache buffers will turn on automatically. It may return the
    data more than the given limitation.

    .. note::

        Please make sure the given environment has a time limitation.
    """
    def __init__(
        self,
        policy: BasePolicy,
        env: Union[gym.Env, BaseVectorEnv],
        buffer: Optional[ReplayBuffer] = None,
        preprocess_fn: Callable[[Any], Union[dict, Batch]] = None,
        stat_size: Optional[int] = 100,
        action_noise: Optional[BaseNoise] = None,
        reward_metric: Optional[Callable[[np.ndarray], float]] = None,
    ) -> None:
        super().__init__()
        self.env = env
        self.env_num = 1
        self.collect_time, self.collect_step, self.collect_episode = 0., 0, 0
        self.buffer = buffer
        self.policy = policy
        self.preprocess_fn = preprocess_fn
        self.process_fn = policy.process_fn
        self._multi_env = isinstance(env, BaseVectorEnv)
        # need multiple cache buffers only if storing in one buffer
        self._cached_buf = []
        if self._multi_env:
            self.env_num = len(env)
            self._cached_buf = [
                ListReplayBuffer() for _ in range(self.env_num)
            ]
        self.stat_size = stat_size
        self._action_noise = action_noise

        self._rew_metric = reward_metric or Collector._default_rew_metric
        self.reset()

    @staticmethod
    def _default_rew_metric(x):
        # this internal function is designed for single-agent RL
        # for multi-agent RL, a reward_metric must be provided
        assert np.asanyarray(x).size == 1, \
            'Please specify the reward_metric ' \
            'since the reward is not a scalar.'
        return x

    def reset(self) -> None:
        """Reset all related variables in the collector."""
        self.data = Batch(state={},
                          obs={},
                          act={},
                          rew={},
                          done={},
                          info={},
                          obs_next={},
                          policy={})
        self.reset_env()
        self.reset_buffer()
        self.step_speed = MovAvg(self.stat_size)
        self.episode_speed = MovAvg(self.stat_size)
        self.collect_time, self.collect_step, self.collect_episode = 0., 0, 0
        if self._action_noise is not None:
            self._action_noise.reset()

    def reset_buffer(self) -> None:
        """Reset the main data buffer."""
        if self.buffer is not None:
            self.buffer.reset()

    def get_env_num(self) -> int:
        """Return the number of environments the collector have."""
        return self.env_num

    def reset_env(self) -> None:
        """Reset all of the environment(s)' states and reset all of the cache
        buffers (if need).
        """
        obs = self.env.reset()
        if not self._multi_env:
            obs = self._make_batch(obs)
        if self.preprocess_fn:
            obs = self.preprocess_fn(obs=obs).get('obs', obs)
        self.data.obs = obs
        self.reward = 0.  # will be specified when the first data is ready
        self.length = np.zeros(self.env_num)
        for b in self._cached_buf:
            b.reset()

    def seed(self, seed: Optional[Union[int, List[int]]] = None) -> None:
        """Reset all the seed(s) of the given environment(s)."""
        return self.env.seed(seed)

    def render(self, **kwargs) -> None:
        """Render all the environment(s)."""
        return self.env.render(**kwargs)

    def close(self) -> None:
        """Close the environment(s)."""
        self.env.close()

    def _make_batch(self, data: Any) -> np.ndarray:
        """Return [data]."""
        if isinstance(data, np.ndarray):
            return data[None]
        else:
            return np.array([data])

    def _reset_state(self, id: Union[int, List[int]]) -> None:
        """Reset self.data.state[id]."""
        state = self.data.state  # it is a reference
        if isinstance(state, torch.Tensor):
            state[id].zero_()
        elif isinstance(state, np.ndarray):
            state[id] = None if state.dtype == np.object else 0
        elif isinstance(state, Batch):
            state.empty_(id)

    def collect(
            self,
            n_step: int = 0,
            n_episode: Union[int, List[int]] = 0,
            random: bool = False,
            render: Optional[float] = None,
            log_fn: Optional[Callable[[dict],
                                      None]] = None) -> Dict[str, float]:
        """Collect a specified number of step or episode.

        :param int n_step: how many steps you want to collect.
        :param n_episode: how many episodes you want to collect (in each
            environment).
        :type n_episode: int or list
        :param bool random: whether to use random policy for collecting data,
            defaults to ``False``.
        :param float render: the sleep time between rendering consecutive
            frames, defaults to ``None`` (no rendering).
        :param function log_fn: a function which receives env info, typically
            for tensorboard logging.

        .. note::

            One and only one collection number specification is permitted,
            either ``n_step`` or ``n_episode``.

        :return: A dict including the following keys

            * ``n/ep`` the collected number of episodes.
            * ``n/st`` the collected number of steps.
            * ``v/st`` the speed of steps per second.
            * ``v/ep`` the speed of episode per second.
            * ``rew`` the mean reward over collected episodes.
            * ``len`` the mean length over collected episodes.
        """
        if not self._multi_env:
            n_episode = np.sum(n_episode)
        start_time = time.time()
        assert sum([(n_step != 0), (n_episode != 0)]) == 1, \
            "One and only one collection number specification is permitted!"
        cur_step, cur_episode = 0, np.zeros(self.env_num)
        reward_sum, length_sum = 0., 0

        # change
        ty1_succ_rate_1 = 0.
        ty1_succ_rate_2 = 0.
        ty1_succ_rate_3 = 0.
        Q_len_1 = 0.
        Q_len_2 = 0.
        Q_len_3 = 0.
        energy_effi_1 = 0.
        energy_effi_2 = 0.
        energy_effi_3 = 0.
        avg_rate = 0.
        avg_power = 0.

        while True:
            if cur_step >= 100000 and cur_episode.sum() == 0:
                warnings.warn(
                    'There are already many steps in an episode. '
                    'You should add a time limitation to your environment!',
                    Warning)

            # restore the state and the input data
            last_state = self.data.state
            if last_state.is_empty():
                last_state = None
            self.data.update(state=Batch(), obs_next=Batch(), policy=Batch())

            # calculate the next action
            if random:
                action_space = self.env.action_space
                if isinstance(action_space, list):
                    result = Batch(act=[a.sample() for a in action_space])
                else:
                    result = Batch(act=self._make_batch(action_space.sample()))
            else:
                with torch.no_grad():
                    result = self.policy(self.data, last_state)

            # convert None to Batch(), since None is reserved for 0-init
            state = result.get('state', Batch())
            if state is None:
                state = Batch()
            self.data.state = state
            if hasattr(result, 'policy'):
                self.data.policy = to_numpy(result.policy)
            # save hidden state to policy._state, in order to save into buffer
            self.data.policy._state = self.data.state

            self.data.act = to_numpy(result.act)
            if self._action_noise is not None:
                self.data.act += self._action_noise(self.data.act.shape)

            # step in env
            obs_next, rew, done, info = self.env.step(
                self.data.act if self._multi_env else self.data.act[0])

            # move data to self.data
            if not self._multi_env:
                obs_next = self._make_batch(obs_next)
                rew = self._make_batch(rew)
                done = self._make_batch(done)
                info = self._make_batch(info)
            self.data.obs_next = obs_next
            self.data.rew = rew
            self.data.done = done
            self.data.info = info

            if log_fn:
                log_fn(info if self._multi_env else info[0])
            if render:
                self.render()
                if render > 0:
                    time.sleep(render)

            # add data into the buffer
            self.length += 1
            self.reward += self.data.rew
            if self.preprocess_fn:
                result = self.preprocess_fn(**self.data)
                self.data.update(result)
            if self._multi_env:  # cache_buffer branch
                # change
                if self.data.done[0]:
                    ty1_succ_rate_1 += self.data.info[0]['ty1_succ_rate_1']
                    ty1_succ_rate_2 += self.data.info[0]['ty1_succ_rate_2']
                    ty1_succ_rate_3 += self.data.info[0]['ty1_succ_rate_3']
                    Q_len_1 += self.data.info[0]['Q_len_1']
                    Q_len_2 += self.data.info[0]['Q_len_2']
                    Q_len_3 += self.data.info[0]['Q_len_3']
                    energy_effi_1 += self.data.info[0]['energy_effi_1']
                    energy_effi_2 += self.data.info[0]['energy_effi_2']
                    energy_effi_3 += self.data.info[0]['energy_effi_3']
                    avg_rate += self.data.info[0]['avg_rate']
                    avg_power += self.data.info[0]['avg_power']
                for i in range(self.env_num):
                    self._cached_buf[i].add(**self.data[i])
                    if self.data.done[i]:
                        if n_step != 0 or np.isscalar(n_episode) or \
                                cur_episode[i] < n_episode[i]:
                            cur_episode[i] += 1
                            reward_sum += self.reward[i]
                            length_sum += self.length[i]
                            if self._cached_buf:
                                cur_step += len(self._cached_buf[i])
                                if self.buffer is not None:
                                    self.buffer.update(self._cached_buf[i])
                        self.reward[i], self.length[i] = 0., 0
                        if self._cached_buf:
                            self._cached_buf[i].reset()
                        self._reset_state(i)
                obs_next = self.data.obs_next
                if sum(self.data.done):
                    env_ind = np.where(self.data.done)[0]
                    obs_reset = self.env.reset(env_ind)
                    if self.preprocess_fn:
                        obs_next[env_ind] = self.preprocess_fn(
                            obs=obs_reset).get('obs', obs_reset)
                    else:
                        obs_next[env_ind] = obs_reset
                self.data.obs_next = obs_next
                if n_episode != 0:
                    if isinstance(n_episode, list) and \
                            (cur_episode >= np.array(n_episode)).all() or \
                            np.isscalar(n_episode) and \
                            cur_episode.sum() >= n_episode:
                        break
            else:  # single buffer, without cache_buffer
                if self.buffer is not None:
                    self.buffer.add(**self.data[0])
                cur_step += 1
                if self.data.done[0]:
                    # change
                    ty1_succ_rate_1 += self.data.info['ty1_succ_rate_1']
                    ty1_succ_rate_2 += self.data.info['ty1_succ_rate_2']
                    ty1_succ_rate_3 += self.data.info['ty1_succ_rate_3']
                    Q_len_1 += self.data.info['Q_len_1']
                    Q_len_2 += self.data.info['Q_len_2']
                    Q_len_3 += self.data.info['Q_len_3']
                    energy_effi_1 += self.data.info['energy_effi_1']
                    energy_effi_2 += self.data.info['energy_effi_2']
                    energy_effi_3 += self.data.info['energy_effi_3']
                    avg_rate += self.data.info[0]['avg_rate']
                    avg_power += self.data.info[0]['avg_power']
                    cur_episode += 1
                    reward_sum += self.reward[0]
                    length_sum += self.length[0]
                    self.reward, self.length = 0., np.zeros(self.env_num)
                    self.data.state = Batch()
                    obs_next = self._make_batch(self.env.reset())
                    if self.preprocess_fn:
                        obs_next = self.preprocess_fn(obs=obs_next).get(
                            'obs', obs_next)
                    self.data.obs_next = obs_next
                if n_episode != 0 and cur_episode >= n_episode:
                    break
            if n_step != 0 and cur_step >= n_step:
                break
            self.data.obs = self.data.obs_next
        self.data.obs = self.data.obs_next

        # generate the statistics
        cur_episode = sum(cur_episode)
        duration = max(time.time() - start_time, 1e-9)
        self.step_speed.add(cur_step / duration)
        self.episode_speed.add(cur_episode / duration)
        self.collect_step += cur_step
        self.collect_episode += cur_episode
        self.collect_time += duration
        if isinstance(n_episode, list):
            n_episode = np.sum(n_episode)
        else:
            n_episode = max(cur_episode, 1)
        reward_sum /= n_episode
        if np.asanyarray(reward_sum).size > 1:  # non-scalar reward_sum
            reward_sum = self._rew_metric(reward_sum)
        # change
        return {
            'n/ep': cur_episode,
            'n/st': cur_step,
            'v/st': self.step_speed.get(),
            'v/ep': self.episode_speed.get(),
            'rew': reward_sum,
            'len': length_sum / n_episode,
            'ty1s_1': ty1_succ_rate_1,
            'ty1s_2': ty1_succ_rate_2,
            'ty1s_3': ty1_succ_rate_3,
            'ql_1': Q_len_1,
            'ql_2': Q_len_2,
            'ql_3': Q_len_3,
            'ee_1': energy_effi_1,
            'ee_2': energy_effi_2,
            'ee_3': energy_effi_3,
            'avg_r': avg_rate,
            'avg_p': avg_power,
        }

    def sample(self, batch_size: int) -> Batch:
        """Sample a data batch from the internal replay buffer. It will call
        :meth:`~tianshou.policy.BasePolicy.process_fn` before returning
        the final batch data.

        :param int batch_size: ``0`` means it will extract all the data from
            the buffer, otherwise it will extract the data with the given
            batch_size.
        """
        batch_data, indice = self.buffer.sample(batch_size)
        batch_data = self.process_fn(batch_data, self.buffer, indice)
        return batch_data
Beispiel #3
0
class Collector(object):
    """docstring for Collector"""
    def __init__(self, policy, env, buffer=None, stat_size=100):
        super().__init__()
        self.env = env
        self.env_num = 1
        self.collect_step = 0
        self.collect_episode = 0
        self.collect_time = 0
        if buffer is None:
            self.buffer = ReplayBuffer(100)
        else:
            self.buffer = buffer
        self.policy = policy
        self.process_fn = policy.process_fn
        self._multi_env = isinstance(env, BaseVectorEnv)
        self._multi_buf = False  # True if buf is a list
        # need multiple cache buffers only if storing in one buffer
        self._cached_buf = []
        if self._multi_env:
            self.env_num = len(env)
            if isinstance(self.buffer, list):
                assert len(self.buffer) == self.env_num, \
                    'The number of data buffer does not match the number of ' \
                    'input env.'
                self._multi_buf = True
            elif isinstance(self.buffer, ReplayBuffer):
                self._cached_buf = [
                    ListReplayBuffer() for _ in range(self.env_num)
                ]
            else:
                raise TypeError('The buffer in data collector is invalid!')
        self.reset_env()
        self.reset_buffer()
        # state over batch is either a list, an np.ndarray, or a torch.Tensor
        self.state = None
        self.step_speed = MovAvg(stat_size)
        self.episode_speed = MovAvg(stat_size)

    def reset_buffer(self):
        if self._multi_buf:
            for b in self.buffer:
                b.reset()
        else:
            self.buffer.reset()

    def get_env_num(self):
        return self.env_num

    def reset_env(self):
        self._obs = self.env.reset()
        self._act = self._rew = self._done = self._info = None
        if self._multi_env:
            self.reward = np.zeros(self.env_num)
            self.length = np.zeros(self.env_num)
        else:
            self.reward, self.length = 0, 0
        for b in self._cached_buf:
            b.reset()

    def seed(self, seed=None):
        if hasattr(self.env, 'seed'):
            return self.env.seed(seed)

    def render(self, **kwargs):
        if hasattr(self.env, 'render'):
            return self.env.render(**kwargs)

    def close(self):
        if hasattr(self.env, 'close'):
            self.env.close()

    def _make_batch(self, data):
        if isinstance(data, np.ndarray):
            return data[None]
        else:
            return np.array([data])

    def collect(self, n_step=0, n_episode=0, render=0):
        warning_count = 0
        if not self._multi_env:
            n_episode = np.sum(n_episode)
        start_time = time.time()
        assert sum([(n_step != 0), (n_episode != 0)]) == 1, \
            "One and only one collection number specification permitted!"
        cur_step = 0
        cur_episode = np.zeros(self.env_num) if self._multi_env else 0
        reward_sum = 0
        length_sum = 0
        while True:
            if warning_count >= 100000:
                warnings.warn(
                    'There are already many steps in an episode. '
                    'You should add a time limitation to your environment!',
                    Warning)
            if self._multi_env:
                batch_data = Batch(obs=self._obs,
                                   act=self._act,
                                   rew=self._rew,
                                   done=self._done,
                                   obs_next=None,
                                   info=self._info)
            else:
                batch_data = Batch(obs=self._make_batch(self._obs),
                                   act=self._make_batch(self._act),
                                   rew=self._make_batch(self._rew),
                                   done=self._make_batch(self._done),
                                   obs_next=None,
                                   info=self._make_batch(self._info))
            result = self.policy(batch_data, self.state)
            self.state = result.state if hasattr(result, 'state') else None
            if isinstance(result.act, torch.Tensor):
                self._act = result.act.detach().cpu().numpy()
            elif not isinstance(self._act, np.ndarray):
                self._act = np.array(result.act)
            else:
                self._act = result.act
            obs_next, self._rew, self._done, self._info = self.env.step(
                self._act if self._multi_env else self._act[0])
            if render > 0:
                self.env.render()
                time.sleep(render)
            self.length += 1
            self.reward += self._rew
            if self._multi_env:
                for i in range(self.env_num):
                    data = {
                        'obs': self._obs[i],
                        'act': self._act[i],
                        'rew': self._rew[i],
                        'done': self._done[i],
                        'obs_next': obs_next[i],
                        'info': self._info[i]
                    }
                    if self._cached_buf:
                        warning_count += 1
                        self._cached_buf[i].add(**data)
                    elif self._multi_buf:
                        warning_count += 1
                        self.buffer[i].add(**data)
                        cur_step += 1
                    else:
                        warning_count += 1
                        self.buffer.add(**data)
                        cur_step += 1
                    if self._done[i]:
                        if n_step != 0 or np.isscalar(n_episode) or \
                                cur_episode[i] < n_episode[i]:
                            cur_episode[i] += 1
                            reward_sum += self.reward[i]
                            length_sum += self.length[i]
                            if self._cached_buf:
                                cur_step += len(self._cached_buf[i])
                                self.buffer.update(self._cached_buf[i])
                        self.reward[i], self.length[i] = 0, 0
                        if self._cached_buf:
                            self._cached_buf[i].reset()
                        if isinstance(self.state, list):
                            self.state[i] = None
                        elif self.state is not None:
                            if isinstance(self.state[i], dict):
                                self.state[i] = {}
                            else:
                                self.state[i] = self.state[i] * 0
                            if isinstance(self.state, torch.Tensor):
                                # remove ref count in pytorch (?)
                                self.state = self.state.detach()
                if sum(self._done):
                    obs_next = self.env.reset(np.where(self._done)[0])
                if n_episode != 0:
                    if isinstance(n_episode, list) and \
                            (cur_episode >= np.array(n_episode)).all() or \
                            np.isscalar(n_episode) and \
                            cur_episode.sum() >= n_episode:
                        break
            else:
                self.buffer.add(self._obs, self._act[0], self._rew, self._done,
                                obs_next, self._info)
                cur_step += 1
                if self._done:
                    cur_episode += 1
                    reward_sum += self.reward
                    length_sum += self.length
                    self.reward, self.length = 0, 0
                    self.state = None
                    obs_next = self.env.reset()
                if n_episode != 0 and cur_episode >= n_episode:
                    break
            if n_step != 0 and cur_step >= n_step:
                break
            self._obs = obs_next
        self._obs = obs_next
        if self._multi_env:
            cur_episode = sum(cur_episode)
        duration = time.time() - start_time
        self.step_speed.add(cur_step / duration)
        self.episode_speed.add(cur_episode / duration)
        self.collect_step += cur_step
        self.collect_episode += cur_episode
        self.collect_time += duration
        if isinstance(n_episode, list):
            n_episode = np.sum(n_episode)
        else:
            n_episode = max(cur_episode, 1)
        return {
            'n/ep': cur_episode,
            'n/st': cur_step,
            'v/st': self.step_speed.get(),
            'v/ep': self.episode_speed.get(),
            'rew': reward_sum / n_episode,
            'len': length_sum / n_episode,
        }

    def sample(self, batch_size):
        if self._multi_buf:
            if batch_size > 0:
                lens = [len(b) for b in self.buffer]
                total = sum(lens)
                batch_index = np.random.choice(total,
                                               batch_size,
                                               p=np.array(lens) / total)
            else:
                batch_index = np.array([])
            batch_data = Batch()
            for i, b in enumerate(self.buffer):
                cur_batch = (batch_index == i).sum()
                if batch_size and cur_batch or batch_size <= 0:
                    batch, indice = b.sample(cur_batch)
                    batch = self.process_fn(batch, b, indice)
                    batch_data.append(batch)
        else:
            batch_data, indice = self.buffer.sample(batch_size)
            batch_data = self.process_fn(batch_data, self.buffer, indice)
        return batch_data
Beispiel #4
0
class Collector(object):
    """The :class:`~tianshou.data.Collector` enables the policy to interact
    with different types of environments conveniently.

    :param policy: an instance of the :class:`~tianshou.policy.BasePolicy`
        class.
    :param env: an environment or an instance of the
        :class:`~tianshou.env.BaseVectorEnv` class.
    :param buffer: an instance of the :class:`~tianshou.data.ReplayBuffer`
        class, or a list of :class:`~tianshou.data.ReplayBuffer`. If set to
        ``None``, it will automatically assign a small-size
        :class:`~tianshou.data.ReplayBuffer`.
    :param int stat_size: for the moving average of recording speed, defaults
        to 100.
    :param bool store_obs_next: whether to store the obs_next to replay
        buffer, defaults to ``True``.

    Example:
    ::

        policy = PGPolicy(...)  # or other policies if you wish
        env = gym.make('CartPole-v0')
        replay_buffer = ReplayBuffer(size=10000)
        # here we set up a collector with a single environment
        collector = Collector(policy, env, buffer=replay_buffer)

        # the collector supports vectorized environments as well
        envs = VectorEnv([lambda: gym.make('CartPole-v0') for _ in range(3)])
        buffers = [ReplayBuffer(size=5000) for _ in range(3)]
        # you can also pass a list of replay buffer to collector, for multi-env
        # collector = Collector(policy, envs, buffer=buffers)
        collector = Collector(policy, envs, buffer=replay_buffer)

        # collect at least 3 episodes
        collector.collect(n_episode=3)
        # collect 1 episode for the first env, 3 for the third env
        collector.collect(n_episode=[1, 0, 3])
        # collect at least 2 steps
        collector.collect(n_step=2)
        # collect episodes with visual rendering (the render argument is the
        #   sleep time between rendering consecutive frames)
        collector.collect(n_episode=1, render=0.03)

        # sample data with a given number of batch-size:
        batch_data = collector.sample(batch_size=64)
        # policy.learn(batch_data)  # btw, vanilla policy gradient only
        #   supports on-policy training, so here we pick all data in the buffer
        batch_data = collector.sample(batch_size=0)
        policy.learn(batch_data)
        # on-policy algorithms use the collected data only once, so here we
        #   clear the buffer
        collector.reset_buffer()

    For the scenario of collecting data from multiple environments to a single
    buffer, the cache buffers will turn on automatically. It may return the
    data more than the given limitation.

    .. note::

        Please make sure the given environment has a time limitation.
    """

    def __init__(self, policy, env, buffer=None, stat_size=100,
                 store_obs_next=True, **kwargs):
        super().__init__()
        self.env = env
        self.env_num = 1
        self.collect_step = 0
        self.collect_episode = 0
        self.collect_time = 0
        if buffer is None:
            self.buffer = ReplayBuffer(100)
        else:
            self.buffer = buffer
        self.policy = policy
        self.process_fn = policy.process_fn
        self._multi_env = isinstance(env, BaseVectorEnv)
        self._multi_buf = False  # True if buf is a list
        # need multiple cache buffers only if storing in one buffer
        self._cached_buf = []
        if self._multi_env:
            self.env_num = len(env)
            if isinstance(self.buffer, list):
                assert len(self.buffer) == self.env_num, \
                    'The number of data buffer does not match the number of ' \
                    'input env.'
                self._multi_buf = True
            elif isinstance(self.buffer, ReplayBuffer):
                self._cached_buf = [
                    ListReplayBuffer() for _ in range(self.env_num)]
            else:
                raise TypeError('The buffer in data collector is invalid!')
        self.reset_env()
        self.reset_buffer()
        # state over batch is either a list, an np.ndarray, or a torch.Tensor
        self.state = None
        self.step_speed = MovAvg(stat_size)
        self.episode_speed = MovAvg(stat_size)
        self._save_s_ = store_obs_next

    def reset_buffer(self):
        """Reset the main data buffer."""
        if self._multi_buf:
            for b in self.buffer:
                b.reset()
        else:
            self.buffer.reset()

    def get_env_num(self):
        """Return the number of environments the collector has."""
        return self.env_num

    def reset_env(self):
        """Reset all of the environment(s)' states and reset all of the cache
        buffers (if need).
        """
        self._obs = self.env.reset()
        self._act = self._rew = self._done = self._info = None
        if self._multi_env:
            self.reward = np.zeros(self.env_num)
            self.length = np.zeros(self.env_num)
        else:
            self.reward, self.length = 0, 0
        for b in self._cached_buf:
            b.reset()

    def seed(self, seed=None):
        """Reset all the seed(s) of the given environment(s)."""
        if hasattr(self.env, 'seed'):
            return self.env.seed(seed)

    def render(self, **kwargs):
        """Render all the environment(s)."""
        if hasattr(self.env, 'render'):
            return self.env.render(**kwargs)

    def close(self):
        """Close the environment(s)."""
        if hasattr(self.env, 'close'):
            self.env.close()

    def _make_batch(self, data):
        if isinstance(data, np.ndarray):
            return data[None]
        else:
            return np.array([data])

    def collect(self, n_step=0, n_episode=0, render=0):
        """Collect a specified number of step or episode.

        :param int n_step: how many steps you want to collect.
        :param n_episode: how many episodes you want to collect (in each
            environment).
        :type n_episode: int or list
        :param float render: the sleep time between rendering consecutive
            frames. No rendering if it is ``0`` (default option).

        .. note::

            One and only one collection number specification is permitted,
            either ``n_step`` or ``n_episode``.

        :return: A dict including the following keys

            * ``n/ep`` the collected number of episodes.
            * ``n/st`` the collected number of steps.
            * ``v/st`` the speed of steps per second.
            * ``v/ep`` the speed of episode per second.
            * ``rew`` the mean reward over collected episodes.
            * ``len`` the mean length over collected episodes.
        """
        warning_count = 0
        if not self._multi_env:
            n_episode = np.sum(n_episode)
        start_time = time.time()
        assert sum([(n_step != 0), (n_episode != 0)]) == 1, \
            "One and only one collection number specification is permitted!"
        cur_step = 0
        cur_episode = np.zeros(self.env_num) if self._multi_env else 0
        reward_sum = 0
        length_sum = 0
        while True:
            if warning_count >= 100000:
                warnings.warn(
                    'There are already many steps in an episode. '
                    'You should add a time limitation to your environment!',
                    Warning)
            if self._multi_env:
                batch_data = Batch(
                    obs=self._obs, act=self._act, rew=self._rew,
                    done=self._done, obs_next=None, info=self._info)
            else:
                batch_data = Batch(
                    obs=self._make_batch(self._obs),
                    act=self._make_batch(self._act),
                    rew=self._make_batch(self._rew),
                    done=self._make_batch(self._done),
                    obs_next=None,
                    info=self._make_batch(self._info))
            with torch.no_grad():
                result = self.policy(batch_data, self.state)
            self.state = result.state if hasattr(result, 'state') else None
            if isinstance(result.act, torch.Tensor):
                self._act = result.act.detach().cpu().numpy()
            elif not isinstance(self._act, np.ndarray):
                self._act = np.array(result.act)
            else:
                self._act = result.act
            obs_next, self._rew, self._done, self._info = self.env.step(
                self._act if self._multi_env else self._act[0])
            if render > 0:
                self.env.render()
                time.sleep(render)
            self.length += 1
            self.reward += self._rew
            if self._multi_env:
                for i in range(self.env_num):
                    data = {
                        'obs': self._obs[i], 'act': self._act[i],
                        'rew': self._rew[i], 'done': self._done[i],
                        'obs_next': obs_next[i] if self._save_s_ else None,
                        'info': self._info[i]}
                    if self._cached_buf:
                        warning_count += 1
                        self._cached_buf[i].add(**data)
                    elif self._multi_buf:
                        warning_count += 1
                        self.buffer[i].add(**data)
                        cur_step += 1
                    else:
                        warning_count += 1
                        self.buffer.add(**data)
                        cur_step += 1
                    if self._done[i]:
                        if n_step != 0 or np.isscalar(n_episode) or \
                                cur_episode[i] < n_episode[i]:
                            cur_episode[i] += 1
                            reward_sum += self.reward[i]
                            length_sum += self.length[i]
                            if self._cached_buf:
                                cur_step += len(self._cached_buf[i])
                                self.buffer.update(self._cached_buf[i])
                        self.reward[i], self.length[i] = 0, 0
                        if self._cached_buf:
                            self._cached_buf[i].reset()
                        if isinstance(self.state, list):
                            self.state[i] = None
                        elif self.state is not None:
                            if isinstance(self.state[i], dict):
                                self.state[i] = {}
                            else:
                                self.state[i] = self.state[i] * 0
                            if isinstance(self.state, torch.Tensor):
                                # remove ref count in pytorch (?)
                                self.state = self.state.detach()
                if sum(self._done):
                    obs_next = self.env.reset(np.where(self._done)[0])
                if n_episode != 0:
                    if isinstance(n_episode, list) and \
                            (cur_episode >= np.array(n_episode)).all() or \
                            np.isscalar(n_episode) and \
                            cur_episode.sum() >= n_episode:
                        break
            else:
                self.buffer.add(
                    self._obs, self._act[0], self._rew,
                    self._done, obs_next if self._save_s_ else None,
                    self._info)
                cur_step += 1
                if self._done:
                    cur_episode += 1
                    reward_sum += self.reward
                    length_sum += self.length
                    self.reward, self.length = 0, 0
                    self.state = None
                    obs_next = self.env.reset()
                if n_episode != 0 and cur_episode >= n_episode:
                    break
            if n_step != 0 and cur_step >= n_step:
                break
            self._obs = obs_next
        self._obs = obs_next
        if self._multi_env:
            cur_episode = sum(cur_episode)
        duration = time.time() - start_time
        self.step_speed.add(cur_step / duration)
        self.episode_speed.add(cur_episode / duration)
        self.collect_step += cur_step
        self.collect_episode += cur_episode
        self.collect_time += duration
        if isinstance(n_episode, list):
            n_episode = np.sum(n_episode)
        else:
            n_episode = max(cur_episode, 1)
        return {
            'n/ep': cur_episode,
            'n/st': cur_step,
            'v/st': self.step_speed.get(),
            'v/ep': self.episode_speed.get(),
            'rew': reward_sum / n_episode,
            'len': length_sum / n_episode,
        }

    def sample(self, batch_size):
        """Sample a data batch from the internal replay buffer. It will call
        :meth:`~tianshou.policy.BasePolicy.process_fn` before returning
        the final batch data.

        :param int batch_size: ``0`` means it will extract all the data from
            the buffer, otherwise it will extract the data with the given
            batch_size.
        """
        if self._multi_buf:
            if batch_size > 0:
                lens = [len(b) for b in self.buffer]
                total = sum(lens)
                batch_index = np.random.choice(
                    total, batch_size, p=np.array(lens) / total)
            else:
                batch_index = np.array([])
            batch_data = Batch()
            for i, b in enumerate(self.buffer):
                cur_batch = (batch_index == i).sum()
                if batch_size and cur_batch or batch_size <= 0:
                    batch, indice = b.sample(cur_batch)
                    batch = self.process_fn(batch, b, indice)
                    batch_data.append(batch)
        else:
            batch_data, indice = self.buffer.sample(batch_size)
            batch_data = self.process_fn(batch_data, self.buffer, indice)
        return batch_data