def test_LearnerSCCS_confidence_intervals(self):
     lrn = ConvSCCS(n_lags=self.n_lags, penalized_features=[])
     coeffs, _ = lrn.fit(self.features, self.labels, self.censoring)
     p_features, p_labels, p_censoring = lrn._preprocess_data(
         self.features, self.labels, self.censoring)
     confidence_intervals = lrn._bootstrap(p_features,
                                           p_labels, p_censoring,
                                           np.hstack(coeffs), 5, .90)
     for i, c in enumerate(coeffs):
         self.assertTrue(
             np.all(confidence_intervals.lower_bound[i] <= c),
             "lower bound of the confidence interval\
                                should be <= coeffs at index %i" % i)
         self.assertTrue(
             np.all(c <= confidence_intervals.upper_bound[i]),
             "upper bound of the confidence interval\
                                should be >= coeffs at index %i" % i)
     # Same with 0 lags
     n_lags = np.zeros_like(self.n_lags, dtype='uint64')
     lrn = ConvSCCS(n_lags=n_lags, penalized_features=[])
     coeffs, _ = lrn.fit(self.features, self.labels, self.censoring)
     p_features, p_labels, p_censoring = lrn._preprocess_data(
         self.features, self.labels, self.censoring)
     confidence_intervals = lrn._bootstrap(p_features,
                                           p_labels, p_censoring,
                                           np.hstack(coeffs), 5, .90)
     for i, c in enumerate(coeffs):
         self.assertTrue(
             np.all(confidence_intervals.lower_bound[i] <= c),
             "lower bound of the confidence interval\
                                should be <= coeffs at index %i" % i)
         self.assertTrue(
             np.all(c <= confidence_intervals.upper_bound[i]),
             "upper bound of the confidence interval\
                                should be >= coeffs at index %i" % i)
 def test_LearnerSCCS_coefficient_groups(self):
     n_lags = np.array([4, 0, 3, 4], dtype='uint64')
     n_features = len(n_lags)
     n_coeffs = (n_lags + 1).sum()
     coeffs = np.ones((n_coeffs, ))
     # 1st feature
     coeffs[1:3] = 2
     # 2nd feature
     coeffs[5] = 1
     # 3rd feature
     coeffs[6:8] = 0
     # 4th feature
     coeffs[10:] = np.array([1, 2, 3, 4, 4])
     expected_equality_groups = [(1, 3), (3, 5), (6, 8), (8, 10), (13, 15)]
     lrn = ConvSCCS(n_lags=n_lags, penalized_features=np.arange(4))
     lrn._set("n_features", n_features)
     equality_groups = lrn._detect_support(coeffs)
     self.assertEqual(expected_equality_groups, equality_groups)
 def test_LearnerSCCS_fit(self):
     seed = 42
     n_lags = np.repeat(2, 2).astype('uint64')
     sim = SimuSCCS(n_cases=800,
                    n_intervals=10,
                    n_features=2,
                    n_lags=n_lags,
                    verbose=False,
                    seed=seed,
                    exposure_type='multiple_exposures')
     features, _, labels, censoring, coeffs = sim.simulate()
     lrn = ConvSCCS(n_lags=n_lags,
                    penalized_features=[],
                    tol=0,
                    max_iter=10,
                    random_state=seed)
     estimated_coeffs, _ = lrn.fit(features, labels, censoring)
     np.testing.assert_almost_equal(np.hstack(estimated_coeffs),
                                    np.hstack(coeffs),
                                    decimal=1)
 def test_LearnerSCCS_score(self):
     lrn = ConvSCCS(n_lags=self.n_lags,
                    penalized_features=[],
                    random_state=self.seed)
     lrn.fit(self.features, self.labels, self.censoring)
     self.assertEqual(lrn.score(),
                      lrn.score(self.features, self.labels, self.censoring))
    def test_LearnerSCCS_preprocess(self):
        features = [
            np.array([[0, 1, 0], [0, 0, 0], [0, 1, 1]], dtype="float64"),
            np.array([[1, 0, 1], [0, 0, 1], [1, 0, 0]], dtype="float64"),
            np.array([[1, 1, 1], [0, 0, 1], [1, 1, 0]], dtype="float64")
        ]
        sparse_features = [csr_matrix(f, shape=(3, 3)) for f in features]
        labels = [
            np.array([0, 0, 1], dtype="uint64"),
            np.array([0, 1, 0], dtype="uint64"),
            np.array([0, 0, 0], dtype="uint64")
        ]
        censoring = np.array([2, 3, 3], dtype="uint64")
        n_lags = np.array([1, 1, 0], dtype="uint64")

        expected_features = [
            np.array([[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 0]]),
            np.array([[1, 0, 0, 0, 1], [0, 1, 0, 0, 1], [1, 0, 0, 0, 0]])
        ]
        expected_labels = [
            np.array([0, 0, 1], dtype="uint64"),
            np.array([0, 1, 0], dtype="uint64"),
        ]
        expected_censoring = np.array([2, 3], dtype="uint64")

        lrn = ConvSCCS(n_lags=n_lags, penalized_features=[])
        X, y, c = lrn._prefit(sparse_features, labels, censoring)
        [
            np.testing.assert_array_equal(f.toarray(), expected_features[i])
            for i, f in enumerate(X)
        ]
        [
            np.testing.assert_array_equal(l, expected_labels[i])
            for i, l in enumerate(y)
        ]
        np.testing.assert_array_equal(c, expected_censoring)
 def test_LearnerSCCS_fit_KFold_CV(self):
     lrn = ConvSCCS(n_lags=self.n_lags,
                    penalized_features=np.arange(self.n_features),
                    random_state=self.seed,
                    C_tv=1e-1,
                    C_group_l1=1e-1)
     lrn.fit(self.features, self.labels, self.censoring)
     score = lrn.score()
     tv_range = (-5, -1)
     groupl1_range = (-5, -1)
     lrn.fit_kfold_cv(self.features,
                      self.labels,
                      self.censoring,
                      C_tv_range=tv_range,
                      C_group_l1_range=groupl1_range,
                      n_cv_iter=4)
     self.assertTrue(lrn.score() <= score)
    def test_LearnerSCCS_fit_KFold_CV(self):
        lrn_scores = []

        def fit(lrn):
            self.setUp()
            lrn.fit(self.features, self.labels, self.censoring)
            score = lrn.score()
            tv_range = (-5, -1)
            groupl1_range = (-5, -1)
            lrn.fit_kfold_cv(self.features,
                             self.labels,
                             self.censoring,
                             C_tv_range=tv_range,
                             C_group_l1_range=groupl1_range,
                             n_cv_iter=4)
            lrn_scores.append(lrn.score())
            self.assertTrue(lrn_scores[-1] <= score)

        fit(
            ConvSCCS(n_lags=self.n_lags,
                     penalized_features=np.arange(self.n_features),
                     random_state=self.seed,
                     C_tv=1e-1,
                     C_group_l1=1e-1))
        fit(
            BatchConvSCCS(n_lags=self.n_lags,
                          penalized_features=np.arange(self.n_features),
                          random_state=self.seed,
                          C_tv=1e-1,
                          C_group_l1=1e-1))
        fit(
            StreamConvSCCS(n_lags=self.n_lags,
                           penalized_features=np.arange(self.n_features),
                           random_state=self.seed,
                           C_tv=1e-1,
                           C_group_l1=1e-1))
        experiment_id=experiment_id,
        version=version,
        seed=seed,
        sim_adjacency_matrix=dumps(adjacency_matrix),
        features_frequency=dumps(exposures_frequencies),
    )

    session.merge(sim_log)
    session.commit()

    n_features = n_base_features
    n_lags = np.repeat(49, n_features).astype("uint64")

    start = time()
    lrn = ConvSCCS(
        n_lags=n_lags, penalized_features=np.arange(n_features), verbose=False
    )
    C_tv_range = (1, 5)
    C_group_l1_range = (1, 5)
    fitted_coeffs, cv_track = lrn.fit_kfold_cv(
        censored_features,
        labels,
        censoring,
        C_tv_range=C_tv_range,
        C_group_l1_range=C_group_l1_range,
        confidence_intervals=False,
    )  # WARNING: no bootstrap in this simulation
    elapsed_time = time() - start

    model_id = "ConvSCCS"
    model_log = ConvSCCSModel(
Beispiel #9
0
    n_agegrps = len(agegrps) - 1

    feat_agegrp = np.zeros((n_intervals, n_agegrps))
    for i in range(n_agegrps):
        feat_agegrp[agegrps[i]:agegrps[i + 1], i] = 1

    feat_agegrp = csr_matrix(feat_agegrp)
    features = [hstack([f, feat_agegrp]).tocsr() for f in features]
    censored_features = [
        hstack([f, feat_agegrp]).tocsr() for f in censored_features
    ]
    n_lags = np.hstack([n_lags, np.zeros(n_agegrps)])

    start = time()
    lrn = ConvSCCS(
        n_lags=n_lags, penalized_features=np.arange(n_features), verbose=False
    )
    C_tv_range = (1, 5)
    C_group_l1_range = (1, 5)
    fitted_coeffs, cv_track = lrn.fit_kfold_cv(
        censored_features,
        labels,
        censoring,
        C_tv_range=C_tv_range,
        C_group_l1_range=C_group_l1_range,
        confidence_intervals=True
    )
    elapsed_time = time() - start

    model_id = "ConvSCCS"
    model_log = ConvSCCSModel(
#                                    C_TV_range, C_L1_range,
#                                    confidence_intervals=True,
#                                    n_samples_bootstrap=20, n_cv_iter=50)
# elapsed_time = time() - start
# print("Elapsed time (model training): %.2f seconds \n" % elapsed_time)
# print("Best model hyper parameters: \n")
# print("C_tv : %f \n" % cv_track.best_model['C_tv'])
# print("C_group_l1 : %f \n" % cv_track.best_model['C_group_l1'])
# cv_track.plot_cv_report(35, 45)
# plt.show()
# confidence_intervals = cv_track.best_model['confidence_intervals']

# using the parameters resulting from cross-validation
learner = ConvSCCS(n_lags=n_lags.astype('uint64'),
                   penalized_features=np.arange(n_features),
                   random_state=42,
                   C_tv=270.2722840570933,
                   C_group_l1=5216.472772625124)

_, confidence_intervals = learner.fit(features,
                                      labels,
                                      censoring,
                                      confidence_intervals=True,
                                      n_samples_bootstrap=20)

# Plot estimated parameters
# get bootstrap confidence intervals
refitted_coeffs = confidence_intervals['refit_coeffs']
lower_bound = confidence_intervals['lower_bound']
upper_bound = confidence_intervals['upper_bound']