Beispiel #1
0
def train(qTables, numGames, alpha, tryHard):
    tryHardGrowth = (1 - tryHard) / numGames

    for i in tqdm(range(numGames)):
        board = tt.genBoard()
        movesLeft = True
        winner = False
        player = 2
        keysSoFar = []
        movesSoFar = []

        computersPlayer = random.randint(1, 2)
        while (movesLeft and not winner):
            if player == computersPlayer:
                bestMove = pickBestNextMove(qTables, keysSoFar, board, player,
                                            computersPlayer, tryHard)
                movesSoFar.append(bestMove)
                tt.applyMove(player, bestMove, board)
            else:
                moves = tt.listEmpties(board)
                randomMove = random.choice(moves)
                tt.applyMove(player, randomMove, board)
            player = tt.togglePlayer(player)

            winner = tt.getWinner(board)
            movesLeft = not tt.noMoreMoves(board)

        score = scoreEndBoard(board, winner, computersPlayer)
        updateQTable(score, qTables, keysSoFar, movesSoFar, alpha)
        tryHard = tryHard + tryHardGrowth
def test(net, epochs):
    net.eval()

    numWins = 0
    numLosses = 0
    numTies = 0

    for i in tqdm(range(epochs)):
        player = 2
        computersPlayer = random.randint(1,2)

        board = np.zeros(shape = (3, 3))
        # board = np.random.randint(low = 0, high = 3, size = (3, 3))

        movesLeft = np.any(np.where(board == 0, 1, 0))
        winner = tt.getWinner(board)

        while(not winner and movesLeft):
            if player == computersPlayer:
                #   generate a move
                oneHot = oneHotTicTacToe(board, computersPlayer).view(1, 1, 18)
                output = net(oneHot)

                #   mask out invalid moves
                invalidMoves = np.where( board.flatten() > 0, True, False)
                maskedOutput = output.clone().view(9)
                maskedOutput[invalidMoves] = -10
                values, index = maskedOutput.max(0)

                #   apply the move
                move = index
                board = board.flatten()
                board[move] = computersPlayer
                board = board.reshape(3, 3)
                        
            else:   #   opponents turn
                empties = tt.listEmpties(board)
                randomMove = random.choice(empties)
                tt.applyMove(player, randomMove, board)
            player = tt.togglePlayer(player)

            movesLeft = np.any(np.where(board == 0, 1, 0))
            winner = tt.getWinner(board)
        
        if winner == computersPlayer:
            numWins += 1
        elif winner == tt.togglePlayer(computersPlayer):
            numLosses += 1
        else:   #   winner == False
            numTies += 1

    return numWins, numLosses, numTies
def test(mct, numGames, numSims):
    numWins = 0
    numTies = 0
    numLosses = 0

    for i in tqdm(range(numGames)):
        board = tt.genBoard()
        movesLeft = True
        winner = False
        player = 2

        computersPlayer = random.randint(1, 2)
        while (movesLeft and not winner):
            if player == computersPlayer:
                simulateChildren(mct, board, player, computersPlayer, numSims)
                bestBoard = pickBestNextMove(mct, board, player)
                # print("################")
                # tt.printBoard(board)
                # tt.printBoard(bestBoard)
                # print("BESTMOVE")
                board = bestBoard
            else:
                moves = tt.listEmpties(board)
                randomMove = random.choice(moves)
                tt.applyMove(player, randomMove, board)
            player = tt.togglePlayer(player)

            winner = tt.getWinner(board)
            movesLeft = not tt.noMoreMoves(board)

        if winner == computersPlayer:
            numWins += 1
        elif winner == tt.togglePlayer(computersPlayer):
            numLosses += 1
        else:  #   tie
            numTies += 1

    return numWins, numLosses, numTies
def simulate(numSimulations, board, player, myPlayer):
    originBoard = copy.deepcopy(board)
    originPlayer = player
    totalScore = 0
    for i in range(numSimulations):
        simBoard = copy.deepcopy(originBoard)
        simPlayer = originPlayer

        winner = tt.getWinner(simBoard)
        movesLeft = not tt.noMoreMoves(simBoard)
        while (movesLeft and not winner):
            moves = tt.listEmpties(simBoard)
            randomMove = random.choice(moves)
            tt.applyMove(simPlayer, randomMove, simBoard)
            simPlayer = tt.togglePlayer(simPlayer)

            winner = tt.getWinner(simBoard)
            movesLeft = not tt.noMoreMoves(simBoard)

        score = scoreEndBoard(simBoard, winner, myPlayer)
        totalScore += score

    return totalScore
Beispiel #5
0
def test(qTables, numGames, tryHard=1.0):
    numWins = 0
    numTies = 0
    numLosses = 0

    for i in tqdm(range(numGames)):
        board = tt.genBoard()
        movesLeft = True
        winner = False
        player = 2
        keysSoFar = []
        movesSoFar = []

        computersPlayer = random.randint(1, 2)
        while (movesLeft and not winner):
            if player == computersPlayer:
                bestMove = pickBestNextMove(qTables, keysSoFar, board, player,
                                            computersPlayer, tryHard)
                movesSoFar.append(bestMove)
                tt.applyMove(player, bestMove, board)
            else:
                moves = tt.listEmpties(board)
                randomMove = random.choice(moves)
                tt.applyMove(player, randomMove, board)
            player = tt.togglePlayer(player)

            winner = tt.getWinner(board)
            movesLeft = not tt.noMoreMoves(board)

        if winner == computersPlayer:
            numWins += 1
        elif winner == tt.togglePlayer(computersPlayer):
            numLosses += 1
        else:  #   tie
            numTies += 1

    return numWins, numLosses, numTies
Beispiel #6
0
def playGame():
    saveQTables = False
    fileName = 'qTables.pickle'

    qTables = {}

    keysSoFar = []
    movesSoFar = []
    tryHard = 0
    alpha = 0.9
    numTrials = 1000000

    if saveQTables:
        train(qTables, numTrials, alpha, tryHard)
        f = open(fileName, 'wb')
        pickle.dump(qTables, f, pickle.HIGHEST_PROTOCOL)
        f.close()
    else:
        f = open(fileName, 'rb')
        qTables = pickle.load(f)
        f.close()

    numWins, numLosses, numTies = test(qTables, 1000)
    print("VS RANDOM OPPONENT...")
    print("numWins:" + str(numWins))
    print("numLosses:" + str(numLosses))
    print("numTies:" + str(numTies))
    quit()

    board = tt.genBoard()
    movesLeft = True
    winner = False
    player = 2
    computersPlayer = random.randint(1, 2)

    print("NEW GAME")
    if computersPlayer == 2:
        print("COMPUTER GOES FIRST...")
    while (movesLeft and not winner):
        if player == 2:
            print("X's Turn")
        else:  # player == 1
            print("O's Turn")
        tt.printBoard(board)

        if player == computersPlayer:
            bestMove = pickBestNextMove(qTables,
                                        keysSoFar,
                                        board,
                                        player,
                                        computersPlayer,
                                        tryHard=1.0,
                                        verbose=True)
            movesSoFar.append(bestMove)
            tt.applyMove(player, bestMove, board)
            player = tt.togglePlayer(player)
        elif player == tt.togglePlayer(computersPlayer):
            validMove = False
            while validMove == False:
                move = input("input move of form 'y x' ")
                y = int(move[0])
                x = int(move[2])
                #   validate move
                if board[y][x] is not 0:
                    print("!!!INVALID MOVE!!!")
                    continue
                else:
                    validMove = True
                board[y][x] = tt.togglePlayer(computersPlayer)
                player = tt.togglePlayer(player)

        winner = tt.getWinner(board)
        movesLeft = not tt.noMoreMoves(board)

    tt.printBoard(board)

    score = scoreEndBoard(board, winner, computersPlayer)
    updateQTable(score, qTables, keysSoFar, movesSoFar, alpha)
    for key in keysSoFar:
        pprint(key)
        pprint(qTables[key])

    if winner:
        if winner == 2:
            print("WINNER: X")
        else:  # winner == 1
            print("WINNER: O")
    else:
        print("TIE")
def train(net, criterion, optimizer, epochs):
    net.train()

    for i in tqdm(range(epochs)):
        player = 2
        computersPlayer = random.randint(1,2)

        optimizer.zero_grad()

        board = np.zeros(shape = (3, 3))

        movesLeft = np.any(np.where(board == 0, 1, 0))
        winner = tt.getWinner(board)

        gameDuration = 0

        moves = []
        outputs = []
        while(not winner and movesLeft):
            if player == computersPlayer:
                #   generate a move
                oneHot = oneHotTicTacToe(board, computersPlayer).view(1, 1, 18)
                output = net(oneHot)

                #   mask out invalid moves
                invalidMoves = np.where( board.flatten() > 0, True, False)
                maskedOutput = output.clone().view(9)
                maskedOutput[invalidMoves] = -10
                values, index = maskedOutput.max(0)

                #   apply the move
                move = index
                board = board.flatten()
                board[move] = computersPlayer
                board = board.reshape(3, 3)
                        
                #   store for later
                moves.append(move)
                outputs.append(output)

            else:   #   opponents turn
                empties = tt.listEmpties(board)
                randomMove = random.choice(empties)
                tt.applyMove(player, randomMove, board)
            player = tt.togglePlayer(player)
            gameDuration += 1

            movesLeft = np.any(np.where(board == 0, 1, 0))
            winner = tt.getWinner(board)
        
        #   get end score of game
        score = scoreEndBoard(board, winner, computersPlayer)
        # gameDurationMultiplier = 1.0 - gameDuration / 10
        # gameDurationMultiplier = gameDurationMultiplier * 0.9
        dilutionFactor = 0.9
        totalDilutant = 1.0
        for i, move in reversed(list(enumerate(moves))):
            totalDilutant *= dilutionFactor
            output = outputs[i]
            target = output.clone().view(9)
            target[move] = score * totalDilutant
            target = target.view(1, 1, 9)

            optimizer.zero_grad()
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
Beispiel #8
0
def test(net, criterion, optimizer, epochs):
    numInvalidMoves = 0

    numWins = 0
    numLosses = 0
    numTies = 0

    optimizer.zero_grad()

    for i in tqdm(range(epochs)):
        player = 2
        computersPlayer = random.randint(1,2)

        board = np.zeros(shape = (3, 3))
        # board = np.random.randint(low = 0, high = 3, size = (3, 3))

        movesLeft = np.any(np.where(board == 0, 1, 0))
        winner = tt.getWinner(board)

        while(not winner and movesLeft):
            if player == computersPlayer:
                move = None
                moveValid = False
                while not moveValid:
                    #   generate a move
                    oneHot = oneHotTicTacToe(board, computersPlayer).view(1, 1, 18)
                    output = net(oneHot)
                    values, index = output.view(9).max(0)
                    if board.flatten()[index] == 0: #   if move is valid
                        moveValid = True

                        #   apply the move
                        move = index
                        board = board.flatten()
                        board[move] = computersPlayer
                        board = board.reshape(3, 3)
                        
                    else:   #   invalid move, prime the whip
                        # print("invalid move")
                        numInvalidMoves += 1
                        optimizer.zero_grad()
                        validMoves = np.where(board == 0, 1, 0)
                        target = torch.tensor(validMoves, dtype=torch.float).view(1, 1, 9)
                        loss = criterion(output, target)
                        loss.backward()
                        optimizer.step()
            else:   #   opponents turn
                empties = tt.listEmpties(board)
                randomMove = random.choice(empties)
                tt.applyMove(player, randomMove, board)
            player = tt.togglePlayer(player)

            movesLeft = np.any(np.where(board == 0, 1, 0))
            winner = tt.getWinner(board)
        
        if winner == computersPlayer:
            numWins += 1
        elif winner == tt.togglePlayer(computersPlayer):
            numLosses += 1
        else:   #   winner == False
            numTies += 1

    return numWins, numLosses, numTies
Beispiel #9
0
def train(net, criterion, optimizer, epochs):
    numInvalidMoves = 0
    for i in tqdm(range(epochs)):
        player = 2
        computersPlayer = random.randint(1,2)

        optimizer.zero_grad()

        board = np.zeros(shape = (3, 3))
        # board = np.random.randint(low = 0, high = 3, size = (3, 3))

        movesLeft = np.any(np.where(board == 0, 1, 0))
        winner = tt.getWinner(board)

        moves = []
        outputs = []
        while(not winner and movesLeft):
            if player == computersPlayer:
                move = None
                moveValid = False
                while not moveValid:
                    #   generate a move
                    oneHot = oneHotTicTacToe(board, computersPlayer).view(1, 1, 18)
                    output = net(oneHot)
                    values, index = output.view(9).max(0)
                    if board.flatten()[index] == 0: #   if move is valid
                        moveValid = True

                        #   apply the move
                        move = index
                        board = board.flatten()
                        board[move] = computersPlayer
                        board = board.reshape(3, 3)
                        
                        #   store for later
                        moves.append(move)
                        outputs.append(output)
                    else:   #   invalid move, prime the whip
                        # print("invalid move")
                        numInvalidMoves += 1
                        optimizer.zero_grad()
                        validMoves = np.where(board == 0, 1, 0)
                        target = torch.tensor(validMoves, dtype=torch.float).view(1, 1, 9)
                        loss = criterion(output, target)
                        loss.backward()
                        optimizer.step()
            else:   #   opponents turn
                empties = tt.listEmpties(board)
                randomMove = random.choice(empties)
                tt.applyMove(player, randomMove, board)
            player = tt.togglePlayer(player)

            movesLeft = np.any(np.where(board == 0, 1, 0))
            winner = tt.getWinner(board)
        
        #   get end score of game

        score = scoreEndBoard(board, winner, computersPlayer)
        for i, move in enumerate(moves):
            output = outputs[i]
            target = output.clone().view(9)
            target[move] = score
            target = target.view(1, 1, 9)

            optimizer.zero_grad()
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()