imageAs2DArray = np.zeros((height, width), dtype=np.uint16) starttime = time.clock() darkImagesDataset = exchangeGrp.create_dataset('data_dark', (ndrk, height, width), 'uint16') # Create dataset darkThetaDataset = exchangeGrp.create_dataset('theta_dark', (ndrk, ), 'float') # Create dataset for darkImageCounter in range(0, ndrk): print "Dark " + str(darkImageCounter) darkThetaDataset[darkImageCounter] = rotmin darkImageName = samplename + str(darkImageCounter + 1).zfill(4) + "." + "tif" darkImageFullPath = tifdir + "/" + darkImageName with tifffile(darkImageFullPath) as tif: imageAs2DArray = tif.asarray() # image is a np.ndarray darkImagesDataset[ darkImageCounter, :, :] = imageAs2DArray # Fill dataset flatImagesDataset = exchangeGrp.create_dataset( 'data_white', (2 * nflt * grid_steps, height, width), 'uint16') flatThetaDataset = exchangeGrp.create_dataset('theta_flat', (2 * nflt * grid_steps, ), 'float') # Create dataset for flatImageCounter in range(0, 2 * nflt * grid_steps): print "Flat " + str(flatImageCounter) if flatImageCounter < nflt * grid_steps: offset = ndrk flatThetaDataset[flatImageCounter] = rotmin else: