Beispiel #1
0
def main():
    from time import time

    start_time = time.now()
    check_pos(200, 300, 400)
    end_time = time.now()

    print(end_time - start_time)
Beispiel #2
0
def train():
    from time import time
    from train_ml import download_data, train_and_evaluate, serialization

    start_time = time.now()
    for mode in ['train', 'test']:
        download_data(mode)
    model, vectorizer = train_and_evaluate()
    serialization(model, vectorizer)
    response = time.now() - start_time
    return response
Beispiel #3
0
def test_filter_date_range():
    class Lifetime(models.NodeModel):
        dob = models.DateProperty(indexed=True)
        mid_life_crisis = models.DateTimeProperty(indexed=True)
        tod = models.DateTimeProperty(indexed=False)

    date = datetime.date
    time = datetime.datetime
    bdays = [date(1952, 3, 5), date(1975, 8, 11), date(1988, 7, 27)]
    crises = [
        time(1992, 3, 6, 2, 15, 30),
        time(2007, 8, 13, 16, 10, 10),
        time(2020, 8, 1, 8, 7, 59, 99)
    ]
    tods = [
        time(2022, 3, 6, 2, 15, 30),
        time(2047, 10, 30, 22, 47, 1),
        time(2060, 8, 15, 8, 7, 59)
    ]
    for t in zip(bdays, crises, tods):
        Lifetime.objects.create(dob=t[0], mid_life_crisis=t[1], tod=t[2])

    low, high = date(1975, 9, 11), time.now()
    query = Lifetime.objects.filter(dob__range=(low, high))
    assert all(low < l.dob < high.date() for l in query)

    nowish = date(2011, 8, 10)
    query = Lifetime.objects.filter(mid_life_crisis__lt=nowish)
    eq_(len(query), 2)

    the_singularity = date(2032, 12, 12)
    query = Lifetime.objects.filter(tod__gt=the_singularity)
    eq_(len(query), 2)
def test_filter_date_range():
    class Lifetime(models.NodeModel):
        dob = models.DateProperty(indexed=True)
        mid_life_crisis = models.DateTimeProperty(indexed=True)
        tod = models.DateTimeProperty(indexed=False)
    date = datetime.date
    time = datetime.datetime
    bdays = [date(1952, 3, 5), date(1975, 8, 11), date(1988, 7, 27)]
    crises = [time(1992, 3, 6, 2, 15, 30), time(2007, 8, 13, 16, 10, 10),
              time(2020, 8, 1, 8, 7, 59, 99)]
    tods = [time(2022, 3, 6, 2, 15, 30), time(2047, 10, 30, 22, 47, 1),
              time(2060, 8, 15, 8, 7, 59)]
    for t in zip(bdays, crises, tods):
        Lifetime.objects.create(dob=t[0], mid_life_crisis=t[1], tod=t[2])

    low, high = date(1975, 9, 11), time.now()
    query = Lifetime.objects.filter(dob__range=(low, high))
    assert all(low < l.dob < high.date() for l in query)

    nowish = date(2011, 8, 10)
    query = Lifetime.objects.filter(mid_life_crisis__lt=nowish)
    eq_(len(query), 2)

    the_singularity = date(2032, 12, 12)
    query = Lifetime.objects.filter(tod__gt=the_singularity)
    eq_(len(query), 2)
def train_and_persist(svm_model, train_d, train_t, fp):
    # your code here
    # 1. train the classifier
    print 'Training svm model'

    from time import time
    st = time.now()
    svm_model.fit(train_d, train_t)
    et = time.now()
    duration = et - st

    with open("stats.txt", "a+") as myfile:
        myfile.write(duration)

    with open(fp, 'wb') as output:  # Overwrites any existing file.
        cPickle.dump(svm_model, output)
    print 'svm model trained and persisted...'
Beispiel #6
0
    def trade_complete(self, data):
        """订单完成后,执行任务"""
        event_type = data.get('event_type')

        # FIXME 定时时间需要计算
        eta = time.now()
        # TODO 先查看是否已有订单已经完成的任务,保证不会重复创建任务
        task = trade_complete(data, eta=eta)

        task_id = task.id
        instance_id = data.get()
        key = '{}:{}'.format(event_type, instance_id)

        self.push_task_id(key, task_id)
def hello_world():
    print('what is now?')
    print(time.now())
    return 'Hello World'
from time import time

print(time.now())
Beispiel #9
0
 def capture(self):
     picamera.PiCamera.capture('image-' + str(time.now()) + '.jpg')