def __init__(self): self._windowManager = WindowManager('benFinder', self.onKeypress) device = depth.CV_CAP_FREENECT #device = 1 print "device=%d" % device self._captureManager = CaptureManager( device, self._windowManager, True) self._captureManager.channel = depth.CV_CAP_OPENNI_BGR_IMAGE self._faceTracker = FaceTracker() self._shouldDrawDebugRects = False self._backgroundSubtract = False self._autoBackgroundSubtract = False self._curveFilter = filters.BGRPortraCurveFilter() self.background_video_img = None self.background_depth_img = None self.autoBackgroundImg = None self._ts = TimeSeries() self._frameCount = 0
def __init__(self, save=False, inFile=None): print "benFinder.__init__()" print os.path.realpath(__file__) configPath = "%s/%s" % (os.path.dirname( os.path.realpath(__file__)), self.configFname) print configPath self.cfg = ConfigUtil(configPath, self.configSection) self.debug = self.cfg.getConfigBool("debug") if (self.debug): print "Debug Mode" self._wkdir = self.cfg.getConfigStr("working_directory") if (self.debug): print "working_directory=%s\n" % self._wkdir self._tmpdir = self.cfg.getConfigStr("tmpdir") if (self.debug): print "tmpdir=%s\n" % self._tmpdir # Check if we are running from live kinect or a file. if (inFile): device = depth.CV_CAP_FILE else: device = depth.CV_CAP_FREENECT # Initialise the captureManager self._captureManager = CaptureManager(device, None, True, inFile=inFile) self._captureManager.channel = depth.CV_CAP_OPENNI_DEPTH_MAP # If we are runnign from a file, use the first frame as the # background image. if (inFile): self.saveBgImg() # If we have asked to save the background image, do that, and exit, # otherwise initialise the seizure detector. if (save): self.saveBgImg() else: self.loadBgImg() self.autoBackgroundImg = None self._status = self.ALARM_STATUS_OK self._ts = TimeSeries( tslen=self.cfg.getConfigInt("timeseries_length")) self._frameCount = 0 self._outputFrameCount = 0 self._nPeaks = 0 self._ts_time = 0 self._rate = 0 self._ws = webServer.benWebServer(self) self._ws.setBgImg( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("background_depth"))) self._ws.setChartImg( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("chart_fname"))) self._ws.setRawImg( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("raw_image_fname"))) self._ws.setMaskedImg( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("masked_image_fname"))) self._ws.setDataFname( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("data_fname"))) self._ws.setAnalysisResults({}) webServer.setRoutes(self._ws) self.run()
class BenFinder(object): configFname = "config.ini" configSection = "benFinder" ALARM_STATUS_OK = 0 # All ok, no alarms. ALARM_STATUS_WARN = 1 # Warning status ALARM_STATUS_FULL = 2 # Full alarm status. ALARM_STATUS_NOT_FOUND = 3 # Benjamin not found in image # (area below config area_threshold parameter) def __init__(self, save=False, inFile=None): print "benFinder.__init__()" print os.path.realpath(__file__) configPath = "%s/%s" % (os.path.dirname( os.path.realpath(__file__)), self.configFname) print configPath self.cfg = ConfigUtil(configPath, self.configSection) self.debug = self.cfg.getConfigBool("debug") if (self.debug): print "Debug Mode" self._wkdir = self.cfg.getConfigStr("working_directory") if (self.debug): print "working_directory=%s\n" % self._wkdir self._tmpdir = self.cfg.getConfigStr("tmpdir") if (self.debug): print "tmpdir=%s\n" % self._tmpdir # Check if we are running from live kinect or a file. if (inFile): device = depth.CV_CAP_FILE else: device = depth.CV_CAP_FREENECT # Initialise the captureManager self._captureManager = CaptureManager(device, None, True, inFile=inFile) self._captureManager.channel = depth.CV_CAP_OPENNI_DEPTH_MAP # If we are runnign from a file, use the first frame as the # background image. if (inFile): self.saveBgImg() # If we have asked to save the background image, do that, and exit, # otherwise initialise the seizure detector. if (save): self.saveBgImg() else: self.loadBgImg() self.autoBackgroundImg = None self._status = self.ALARM_STATUS_OK self._ts = TimeSeries( tslen=self.cfg.getConfigInt("timeseries_length")) self._frameCount = 0 self._outputFrameCount = 0 self._nPeaks = 0 self._ts_time = 0 self._rate = 0 self._ws = webServer.benWebServer(self) self._ws.setBgImg( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("background_depth"))) self._ws.setChartImg( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("chart_fname"))) self._ws.setRawImg( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("raw_image_fname"))) self._ws.setMaskedImg( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("masked_image_fname"))) self._ws.setDataFname( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("data_fname"))) self._ws.setAnalysisResults({}) webServer.setRoutes(self._ws) self.run() def run(self): """Run the main loop.""" while (True): self._captureManager.enterFrame() frame = self._captureManager.frame if frame is not None: if (self.autoBackgroundImg == None): self.autoBackgroundImg = numpy.float32(frame) rawFrame = frame.copy() # First work out the region of interest by # subtracting the fixed background image # to create a mask. #print frame #print self._background_depth_img absDiff = cv2.absdiff(frame, self._background_depth_img) benMask, maskArea = filters.getBenMask(absDiff, 8) cv2.accumulateWeighted(frame, self.autoBackgroundImg, 0.05) # Convert the background image into the same format # as the main frame. #bg = self.autoBackgroundImg bg = cv2.convertScaleAbs(self.autoBackgroundImg, alpha=1.0) # Subtract the background from the frame image cv2.absdiff(frame, bg, frame) # Scale the difference image to make it more sensitive # to changes. cv2.convertScaleAbs(frame, frame, alpha=100) # Apply the mask so we only see the test subject. frame = cv2.multiply(frame, benMask, dst=frame, dtype=-1) if (maskArea <= self.cfg.getConfigInt('area_threshold')): bri = (0, 0, 0) else: # Calculate the brightness of the test subject. bri = filters.getMean(frame, benMask) # Add the brightness to the time series ready for analysis. self._ts.addSamp(bri[0]) self._ts.addImg(rawFrame) # Write timeseries to a file every 'output_framecount' frames. if (self._outputFrameCount >= self.cfg.getConfigInt('output_framecount')): # Write timeseries to file self._ts.writeToFile("%s/%s" % \ ( self.cfg.getConfigStr('output_directory'), self.cfg.getConfigStr('ts_fname') )) self._outputFrameCount = 0 else: self._outputFrameCount = self._outputFrameCount + 1 # Only do the analysis every 15 frames (0.5 sec), or whatever # is specified in configuration file analysis_framecount # parameter. if (self._frameCount < self.cfg.getConfigInt('analysis_framecount')): self._frameCount = self._frameCount + 1 else: # Look for peaks in the brightness (=movement). self._nPeaks, self._ts_time, self._rate = self._ts.findPeaks( ) #print "%d peaks in %3.2f sec = %3.1f bpm" % \ # (nPeaks,ts_time,rate) oldStatus = self._status if (maskArea > self.cfg.getConfigInt('area_threshold')): # Check for alarm levels if (self._rate > self.cfg.getConfigInt("rate_warn")): self._status = self.ALARM_STATUS_OK elif (self._rate > self.cfg.getConfigInt("rate_alarm")): self._status = self.ALARM_STATUS_WARN else: self._status = self.ALARM_STATUS_FULL else: self._status = self.ALARM_STATUS_NOT_FOUND if (oldStatus == self.ALARM_STATUS_OK and self._status == self.ALARM_STATUS_WARN) or \ (oldStatus == self.ALARM_STATUS_WARN and self._status == self.ALARM_STATUS_FULL): # Write timeseries to file self._ts.writeToFile("%s/%s" % \ ( self.cfg.getConfigStr('output_directory'), self.cfg.getConfigStr('alarm_ts_fname') ),bgImg=self._background_depth_img) # Collect the analysis results together and send them # to the web server. resultsDict = {} resultsDict['fps'] = "%3.0f" % self.fps resultsDict['bri'] = "%4.0f" % self._ts.mean resultsDict['area'] = "%6.0f" % maskArea resultsDict['nPeaks'] = "%d" % self._nPeaks resultsDict['ts_time'] = self._ts_time resultsDict['rate'] = "%d" % self._rate resultsDict['time_t'] = time.ctime() resultsDict['status'] = self._status self._ws.setAnalysisResults(resultsDict) # Write the results to file as a json string utils.writeJSON(resultsDict,"%s/%s" % \ (self._tmpdir, self.cfg.getConfigStr("data_fname"))) utils.writeLog(resultsDict,"%s/%s" % \ (self._tmpdir, "benFinder_alarms.log")) # Plot the graph of brightness, and save the images # to disk. self._ts.plotRawData( file=True, fname="%s/%s" % \ (self._tmpdir,self.cfg.getConfigStr("chart_fname"))) cv2.imwrite( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("raw_image_fname")), rawFrame) cv2.imwrite( "%s/%s" % (self._tmpdir, self.cfg.getConfigStr("masked_image_fname")), frame) self._frameCount = 0 else: print "Null frame received - assuming end of file and exiting" break self._captureManager.exitFrame() @property def fps(self): return self._captureManager.fps @property def nPeaks(self): return self._nPeaks @property def ts_time(self): return self._ts_time @property def rate(self): return self._rate @property def rawImgFname(self): return self.cfg.getConfigStr("raw_image_fname") @property def maskedImgFname(self): return self.cfg.getConfigStr("masked_image_fname") @property def chartImgFname(self): return self.cfg.getConfigStr("chart_fname") def saveBgImg(self): """ Write a new background image to the appropriate file location.""" if (self._captureManager.hasEnteredFrame): self._captureManager.exitFrame() self._captureManager.enterFrame() print "Writing image to %s." % self.cfg.getConfigStr( "background_depth") self._captureManager.writeImage( "%s/%s" % (self._wkdir, self.cfg.getConfigStr("background_depth"))) print self._captureManager.frame print self._captureManager.frame.dtype self._captureManager.exitFrame() self.loadBgImg() def loadBgImg(self): print "Loading background image %s/%s." % \ (self._wkdir,self.cfg.getConfigStr("background_depth")) self._background_depth_img = cv2.imread("%s/%s" % \ (self._wkdir,self.cfg.getConfigStr("background_depth")), cv2.CV_LOAD_IMAGE_GRAYSCALE) # cv2.CV_LOAD_IMAGE_UNCHANGED) print self._background_depth_img print self._background_depth_img.dtype
class BenFinder(object): BACKGROUND_VIDEO_FNAME = "background_video.png" BACKGROUND_DEPTH_FNAME = "background_depth.png" def __init__(self): self._windowManager = WindowManager('benFinder', self.onKeypress) device = depth.CV_CAP_FREENECT #device = 1 print "device=%d" % device self._captureManager = CaptureManager( device, self._windowManager, True) self._captureManager.channel = depth.CV_CAP_OPENNI_BGR_IMAGE self._faceTracker = FaceTracker() self._shouldDrawDebugRects = False self._backgroundSubtract = False self._autoBackgroundSubtract = False self._curveFilter = filters.BGRPortraCurveFilter() self.background_video_img = None self.background_depth_img = None self.autoBackgroundImg = None self._ts = TimeSeries() self._frameCount = 0 def loadBackgroundImages(self): """ Load the background images to be used for background subtraction from disk files. """ self.background_video_img = cv2.imread(BenFinder.BACKGROUND_VIDEO_FNAME) self.background_depth_img = cv2.imread(BenFinder.BACKGROUND_DEPTH_FNAME, cv2.CV_LOAD_IMAGE_GRAYSCALE) def showBackgroundImage(self): """ Display the background image used for subtraction in a separate window """ # Load the images from disk if necessary. if (not self.background_depth_img or not self.background_video_img): self.loadBackgroundImages() # Display the correct image if (self._autoBackgroundSubtract): cv2.imshow("Auto Background Image", self.autoBackgroundImg) else: if (self._captureManager.channel == \ depth.CV_CAP_OPENNI_DEPTH_MAP): cv2.imshow("background_depth_img",self.background_depth_img) elif (self._captureManager.channel == \ depth.CV_CAP_OPENNI_BGR_IMAGE): cv2.imshow("background_video_img",self.background_video_img) else: print "Error - Invalid Channel %d." % \ self._captureManager.channel def run(self): """Run the main loop.""" self._windowManager.createWindow() while self._windowManager.isWindowCreated: self._captureManager.enterFrame() frame = self._captureManager.frame if frame is not None: if (self._backgroundSubtract): if (self._autoBackgroundSubtract): if (self._captureManager.channel == \ depth.CV_CAP_OPENNI_DEPTH_MAP): if (self.autoBackgroundImg == None): self.autoBackgroundImg = numpy.float32(frame) # First work out the region of interest by # subtracting the fixed background image # to create a mask. absDiff = cv2.absdiff(frame,self.background_depth_img) benMask,maskArea = filters.getBenMask(absDiff,8) cv2.accumulateWeighted(frame, self.autoBackgroundImg, 0.05) # Convert the background image into the same format # as the main frame. bg = cv2.convertScaleAbs(self.autoBackgroundImg, alpha=1.0) # Subtract the background from the frame image cv2.absdiff(frame,bg,frame) # Scale the difference image to make it more sensitive # to changes. cv2.convertScaleAbs(frame,frame,alpha=100) #frame = cv2.bitwise_and(frame,frame,dst=frame,mask=benMask) frame = cv2.multiply(frame,benMask,dst=frame,dtype=-1) bri = filters.getMean(frame,benMask) #print "%4.0f, %3.0f" % (bri[0],self._captureManager.fps) self._ts.addSamp(bri[0]) if (self._frameCount < 15): self._frameCount = self._frameCount +1 else: self._ts.plotRawData() self._ts.findPeaks() self._frameCount = 0 else: print "Auto background subtract only works for depth images!" else: if (self._captureManager.channel == \ depth.CV_CAP_OPENNI_DEPTH_MAP): cv2.absdiff(frame,self.background_depth_img,frame) benMask = filters.getBenMask(frame,8) bri = filters.getMean(frame,benMask) print bri elif (self._captureManager.channel == \ depth.CV_CAP_OPENNI_BGR_IMAGE): cv2.absdiff(frame,self.background_video_img,frame) else: print "Error - Invalid Channel %d." % \ self._captureManager.channel #ret,frame = cv2.threshold(frame,200,255,cv2.THRESH_TOZERO) #self._faceTracker.update(frame) #faces = self._faceTracker.faces #if self._shouldDrawDebugRects: # self._faceTracker.drawDebugRects(frame) self._captureManager.exitFrame() self._windowManager.processEvents() def onKeypress(self, keycode): """Handle a keypress. space -> Take a screenshot. tab -> Start/stop recording a screencast. x -> Start/stop drawing debug rectangles around faces. a -> toggle automatic accumulated background subtraction on or off. b -> toggle simple background subtraction on or off. s -> Save current frame as background image. d -> Toggle between video and depth map view i -> Display the background image that is being used for subtraction. escape -> Quit. """ print "keycode=%d" % keycode if keycode == 32: # space self._captureManager.writeImage('screenshot.png') elif keycode == 9: # tab if not self._captureManager.isWritingVideo: print "Starting Video Recording..." self._captureManager.startWritingVideo( 'screencast.avi') else: print "Stopping video recording" self._captureManager.stopWritingVideo() elif keycode == 120: # x self._shouldDrawDebugRects = \ not self._shouldDrawDebugRects elif (chr(keycode)=='a'): # Autometic background subtraction if (self._autoBackgroundSubtract == True): print "Switching off auto background Subtraction" self.autoBackgroundImage = None self._autoBackgroundSubtract = False else: print "Switching on auto background subtraction" self._autoBackgroundSubtract = True elif (chr(keycode)=='b'): # Simple background subtraction if (self._backgroundSubtract == True): print "Switching off background Subtraction" self._backgroundSubtract = False else: print "Switching on background subtraction" self.loadBackgroundImages() self._backgroundSubtract = True elif (chr(keycode)=='d'): if (self._captureManager.channel == depth.CV_CAP_OPENNI_BGR_IMAGE): print "switching to depth map..." self._captureManager.channel = depth.CV_CAP_OPENNI_DEPTH_MAP else: print "switching to video" self._captureManager.channel = depth.CV_CAP_OPENNI_BGR_IMAGE elif (chr(keycode)=='i'): self.showBackgroundImage() elif (chr(keycode)=='s'): print "Saving Background Image" if (self._captureManager.channel == depth.CV_CAP_OPENNI_DEPTH_MAP): self._captureManager.writeImage(BenFinder.BACKGROUND_DEPTH_FNAME) elif (self._captureManager.channel == depth.CV_CAP_OPENNI_BGR_IMAGE): self._captureManager.writeImage(BenFinder.BACKGROUND_VIDEO_FNAME) else: print "Invalid Channel %d - doing nothing!" \ % self._captureManager.channel elif keycode == 27: # escape self._windowManager.destroyWindow()
def __init__(self,save=False, inFile = None): print "benFinder.__init__()" print os.path.realpath(__file__) configPath = "%s/%s" % (os.path.dirname(os.path.realpath(__file__)), self.configFname) print configPath self.cfg = ConfigUtil(configPath,self.configSection) self.debug = self.cfg.getConfigBool("debug") if (self.debug): print "Debug Mode" self._wkdir = self.cfg.getConfigStr("working_directory") if (self.debug): print "working_directory=%s\n" % self._wkdir self._tmpdir = self.cfg.getConfigStr("tmpdir") if (self.debug): print "tmpdir=%s\n" % self._tmpdir # Check if we are running from live kinect or a file. if (inFile): device = depth.CV_CAP_FILE else: device = depth.CV_CAP_FREENECT # Initialise the captureManager self._captureManager = CaptureManager( device, None, True, inFile=inFile) self._captureManager.channel = depth.CV_CAP_OPENNI_DEPTH_MAP # If we are runnign from a file, use the first frame as the # background image. if (inFile): self.saveBgImg() # If we have asked to save the background image, do that, and exit, # otherwise initialise the seizure detector. if (save): self.saveBgImg() else: self.loadBgImg() self.autoBackgroundImg = None self._status = self.ALARM_STATUS_OK self._ts = TimeSeries(tslen=self.cfg.getConfigInt("timeseries_length")) self._frameCount = 0 self._outputFrameCount = 0 self._nPeaks = 0 self._ts_time = 0 self._rate = 0 self._ws = webServer.benWebServer(self) self._ws.setBgImg("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("background_depth"))) self._ws.setChartImg("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("chart_fname"))) self._ws.setRawImg("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("raw_image_fname"))) self._ws.setMaskedImg("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("masked_image_fname"))) self._ws.setDataFname("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("data_fname"))) self._ws.setAnalysisResults({}) webServer.setRoutes(self._ws) self.run()
class BenFinder(object): configFname = "config.ini" configSection = "benFinder" ALARM_STATUS_OK = 0 # All ok, no alarms. ALARM_STATUS_WARN = 1 # Warning status ALARM_STATUS_FULL = 2 # Full alarm status. ALARM_STATUS_NOT_FOUND = 3 # Benjamin not found in image # (area below config area_threshold parameter) def __init__(self,save=False, inFile = None): print "benFinder.__init__()" print os.path.realpath(__file__) configPath = "%s/%s" % (os.path.dirname(os.path.realpath(__file__)), self.configFname) print configPath self.cfg = ConfigUtil(configPath,self.configSection) self.debug = self.cfg.getConfigBool("debug") if (self.debug): print "Debug Mode" self._wkdir = self.cfg.getConfigStr("working_directory") if (self.debug): print "working_directory=%s\n" % self._wkdir self._tmpdir = self.cfg.getConfigStr("tmpdir") if (self.debug): print "tmpdir=%s\n" % self._tmpdir # Check if we are running from live kinect or a file. if (inFile): device = depth.CV_CAP_FILE else: device = depth.CV_CAP_FREENECT # Initialise the captureManager self._captureManager = CaptureManager( device, None, True, inFile=inFile) self._captureManager.channel = depth.CV_CAP_OPENNI_DEPTH_MAP # If we are runnign from a file, use the first frame as the # background image. if (inFile): self.saveBgImg() # If we have asked to save the background image, do that, and exit, # otherwise initialise the seizure detector. if (save): self.saveBgImg() else: self.loadBgImg() self.autoBackgroundImg = None self._status = self.ALARM_STATUS_OK self._ts = TimeSeries(tslen=self.cfg.getConfigInt("timeseries_length")) self._frameCount = 0 self._outputFrameCount = 0 self._nPeaks = 0 self._ts_time = 0 self._rate = 0 self._ws = webServer.benWebServer(self) self._ws.setBgImg("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("background_depth"))) self._ws.setChartImg("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("chart_fname"))) self._ws.setRawImg("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("raw_image_fname"))) self._ws.setMaskedImg("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("masked_image_fname"))) self._ws.setDataFname("%s/%s" % (self._tmpdir, self.cfg.getConfigStr("data_fname"))) self._ws.setAnalysisResults({}) webServer.setRoutes(self._ws) self.run() def run(self): """Run the main loop.""" while(True): self._captureManager.enterFrame() frame = self._captureManager.frame if frame is not None: if (self.autoBackgroundImg == None): self.autoBackgroundImg = numpy.float32(frame) rawFrame = frame.copy() # First work out the region of interest by # subtracting the fixed background image # to create a mask. #print frame #print self._background_depth_img absDiff = cv2.absdiff(frame,self._background_depth_img) benMask,maskArea = filters.getBenMask(absDiff,8) cv2.accumulateWeighted(frame, self.autoBackgroundImg,0.05) # Convert the background image into the same format # as the main frame. #bg = self.autoBackgroundImg bg = cv2.convertScaleAbs(self.autoBackgroundImg, alpha=1.0) # Subtract the background from the frame image cv2.absdiff(frame,bg,frame) # Scale the difference image to make it more sensitive # to changes. cv2.convertScaleAbs(frame,frame,alpha=100) # Apply the mask so we only see the test subject. frame = cv2.multiply(frame,benMask,dst=frame,dtype=-1) if (maskArea <= self.cfg.getConfigInt('area_threshold')): bri=(0,0,0) else: # Calculate the brightness of the test subject. bri = filters.getMean(frame,benMask) # Add the brightness to the time series ready for analysis. self._ts.addSamp(bri[0]) self._ts.addImg(rawFrame) # Write timeseries to a file every 'output_framecount' frames. if (self._outputFrameCount >= self.cfg.getConfigInt('output_framecount')): # Write timeseries to file self._ts.writeToFile("%s/%s" % \ ( self.cfg.getConfigStr('output_directory'), self.cfg.getConfigStr('ts_fname') )) self._outputFrameCount = 0 else: self._outputFrameCount = self._outputFrameCount + 1 # Only do the analysis every 15 frames (0.5 sec), or whatever # is specified in configuration file analysis_framecount # parameter. if (self._frameCount < self.cfg.getConfigInt('analysis_framecount')): self._frameCount = self._frameCount +1 else: # Look for peaks in the brightness (=movement). self._nPeaks,self._ts_time,self._rate = self._ts.findPeaks() #print "%d peaks in %3.2f sec = %3.1f bpm" % \ # (nPeaks,ts_time,rate) oldStatus = self._status if (maskArea > self.cfg.getConfigInt('area_threshold')): # Check for alarm levels if (self._rate > self.cfg.getConfigInt( "rate_warn")): self._status= self.ALARM_STATUS_OK elif (self._rate > self.cfg.getConfigInt( "rate_alarm")): self._status= self.ALARM_STATUS_WARN else: self._status= self.ALARM_STATUS_FULL else: self._status = self.ALARM_STATUS_NOT_FOUND if (oldStatus == self.ALARM_STATUS_OK and self._status == self.ALARM_STATUS_WARN) or \ (oldStatus == self.ALARM_STATUS_WARN and self._status == self.ALARM_STATUS_FULL): # Write timeseries to file self._ts.writeToFile("%s/%s" % \ ( self.cfg.getConfigStr('output_directory'), self.cfg.getConfigStr('alarm_ts_fname') ),bgImg=self._background_depth_img) # Collect the analysis results together and send them # to the web server. resultsDict = {} resultsDict['fps'] = "%3.0f" % self.fps resultsDict['bri'] = "%4.0f" % self._ts.mean resultsDict['area'] = "%6.0f" % maskArea resultsDict['nPeaks'] = "%d" % self._nPeaks resultsDict['ts_time'] = self._ts_time resultsDict['rate'] = "%d" % self._rate resultsDict['time_t'] = time.ctime() resultsDict['status'] = self._status self._ws.setAnalysisResults(resultsDict) # Write the results to file as a json string utils.writeJSON(resultsDict,"%s/%s" % \ (self._tmpdir, self.cfg.getConfigStr("data_fname"))) utils.writeLog(resultsDict,"%s/%s" % \ (self._tmpdir, "benFinder_alarms.log")) # Plot the graph of brightness, and save the images # to disk. self._ts.plotRawData( file=True, fname="%s/%s" % \ (self._tmpdir,self.cfg.getConfigStr("chart_fname"))) cv2.imwrite("%s/%s" % (self._tmpdir, self.cfg.getConfigStr( "raw_image_fname")), rawFrame) cv2.imwrite("%s/%s" % (self._tmpdir,self.cfg.getConfigStr( "masked_image_fname")), frame) self._frameCount = 0 else: print "Null frame received - assuming end of file and exiting" break self._captureManager.exitFrame() @property def fps(self): return self._captureManager.fps @property def nPeaks(self): return self._nPeaks @property def ts_time(self): return self._ts_time @property def rate(self): return self._rate @property def rawImgFname(self): return self.cfg.getConfigStr("raw_image_fname") @property def maskedImgFname(self): return self.cfg.getConfigStr("masked_image_fname") @property def chartImgFname(self): return self.cfg.getConfigStr("chart_fname") def saveBgImg(self): """ Write a new background image to the appropriate file location.""" if (self._captureManager.hasEnteredFrame): self._captureManager.exitFrame() self._captureManager.enterFrame() print "Writing image to %s." % self.cfg.getConfigStr("background_depth") self._captureManager.writeImage("%s/%s" % (self._wkdir, self.cfg.getConfigStr("background_depth") )) print self._captureManager.frame print self._captureManager.frame.dtype self._captureManager.exitFrame() self.loadBgImg() def loadBgImg(self): print "Loading background image %s/%s." % \ (self._wkdir,self.cfg.getConfigStr("background_depth")) self._background_depth_img = cv2.imread("%s/%s" % \ (self._wkdir,self.cfg.getConfigStr("background_depth")), cv2.CV_LOAD_IMAGE_GRAYSCALE) # cv2.CV_LOAD_IMAGE_UNCHANGED) print self._background_depth_img print self._background_depth_img.dtype