def test_timecorr():

    data_dl = hyp.tools.format_data(data_list)
    data_pdf = hyp.tools.format_data(pandas_dataframe)
    data_npa = hyp.tools.format_data(numpy_array)
    #   data_npl = hyp.tools.format_data(numpy_array_list)
    #   data_rand = hyp.tools.format_data(random_numbers)
    #   these are now lists
    assert isinstance(data_dl, list)

    Test_dl = data_dl[0].shape[0]
    Test_pdf = data_pdf[0].shape[0]
    Test_npa = data_npa[0].shape[0]
    #Test returns the shape of the weights_function
    #   Test_npl=  data_npl[0].shape[0]
    #   Test_rand=  data_rn[0].shape[0]

    assert isinstance(Test_pdf, int)

    dl_tester = gaussian_weights(Test_dl, params=gaussian_params)
    pdf_tester = gaussian_weights(Test_pdf, params=gaussian_params)
    npa_tester = gaussian_weights(Test_npa, params=gaussian_params)
    #   thrid_tester = gaussian_weights(T3, params=gaussian_params)
    #   fourth_tester = gaussian_weights(T4, params=gaussian_params)

    assert isinstance(npa_tester, np.ndarray)
Beispiel #2
0
def test_wisfc():
    weights = gaussian_weights(T, params=gaussian_params)
    w_list = wisfc(data, weights)
    assert isinstance(w_list, list)

    w_array = wisfc(template_data, weights)
    assert isinstance(w_array, np.ndarray)
Beispiel #3
0
def test_wcorr():
    weights = gaussian_weights(T, params=gaussian_params)
    corrs = wcorr(template_data[:, 0][:, np.newaxis],
                  template_data[:, 1][:, np.newaxis], weights)

    col_1 = np.atleast_2d(data_sim[:, 0]).T

    col_2 = np.atleast_2d(data_sim[:, 1]).T

    corrs_col_arrays = np.squeeze(wcorr(data_sim, data_sim, weights_sim))

    corrs_multidim = wcorr(col_1, data_sim, weights_sim)

    corrs_col = np.squeeze(wcorr(col_1, col_1, weights_sim))

    corrs_col_neg = np.squeeze(wcorr(-col_1, col_1, weights_sim))

    corrs_col_12 = np.squeeze(wcorr(col_2, col_1, weights_sim))

    # correlate one column with itself and the same column in larger array is the same
    assert (np.allclose(corrs_col, corrs_multidim[0][0]))
    # correlating a timeseries with -1 times itself produces -1's
    assert corrs_col.mean() == 1
    # correlate one column with the second column and the same column in larger array is the same
    assert (np.allclose(corrs_col_12, corrs_multidim[0][1]))
    # correlating a timeseries with -1 times itself produces negative correlations
    assert (np.allclose(-corrs_col, corrs_col_neg))
    # correlating a timeseries with -1 times itself produces -1's
    assert corrs_col_neg.mean() == -1
    # check if corresponding columns in 3d array produces 1
    assert (np.isclose(corrs_col_arrays[4, 4, 500], 1))
    # check if toeplitz matrix is produced
    assert (np.allclose(corrs_col_arrays[:, :, 500], R, atol=.2))
    # check if corrs is a numpy array
    assert isinstance(corrs, np.ndarray)
Beispiel #4
0
def test_gaussian_weights():
    test_gw = gaussian_weights(T, params=gaussian_params)

    assert isinstance(test_gw, np.ndarray)
Beispiel #5
0
    'params': {
        'scale': width
    }
}
try_data = []
repdata = 4
for i in range(repdata):
    try_data.append(data_sim)

try_data = np.array(try_data)

gps = {'var': 100}

T_sim = data_sim.shape[0]

weights_sim = gaussian_weights(T_sim, gps)

template_data = np.cumsum(np.random.randn(T, D), axis=0)
data = []

for s in np.arange(S):
    data.append(template_data + np.multiply(
        0.1, np.random.randn(template_data.shape[0], template_data.shape[1])))


def test_gaussian_weights():
    test_gw = gaussian_weights(T, params=gaussian_params)

    assert isinstance(test_gw, np.ndarray)