Beispiel #1
0
    def test_lightcurve(self):
        # make 4 images with different date
        images = []
        image_datasets = db_subs.generate_timespaced_dbimages_data(n_images=4,
            taustart_ts= datetime.datetime(2010, 3, 3)
        )

        for dset in image_datasets:
            image = Image(dataset=self.dataset, data=dset)
            images.append(image)

        # 3 sources per image, with different coordinates & flux
        data_list = []
        for i in range(1, 4):
            data_list.append({
                'ra': 111.11 + i,
                'decl': 11.11 + i,
                'i_peak': 10. * i ,
                'i_peak_err': 0.1,
            })
        # Insert the 3 sources in each image, while further varying the flux
        lightcurves_sorted_by_ra = [[],[],[]]
        for im_idx, image in enumerate(images):
            # Create the "source finding results"
            # Note that we reuse 'i_peak' as both peak & integrated flux.
            img_sources = []
            for src_idx, data in enumerate(data_list):
                src = db_subs.example_extractedsource_tuple(
                    ra = data['ra'],dec=data['decl'],
                    peak=data['i_peak']* (1 + im_idx),
                    flux = data['i_peak']* (1 + im_idx)
                )
                lightcurves_sorted_by_ra[src_idx].append(src)
                img_sources.append(src)
            insert_extracted_sources(image._id, img_sources)
            associate_extracted_sources(image._id, deRuiter_r=3.7,
                                        new_source_sigma_margin=3)

        # updates the dataset and its set of images
        self.dataset.update()
        self.dataset.update_images()

        # update the images and their sets of sources
        for image in self.dataset.images:
            image.update()
            image.update_sources()

        # Now pick last image, select the first source (smallest RA)
        # and extract its light curve
        sources = self.dataset.images[-1].sources
        sources = sorted(sources, key=attrgetter('ra'))
        lightcurve = ligtcurve_func(sources[0]._id)

        # check if the sources are associated in all images
        self.assertEqual(len(images), len(lightcurve))
        self.assertEqual(lightcurve[0][0], datetime.datetime(2010, 3, 3, 0, 0))
        self.assertEqual(lightcurve[1][0], datetime.datetime(2010, 3, 4, 0, 0))
        self.assertEqual(lightcurve[2][0], datetime.datetime(2010, 3, 5, 0, 0))
        self.assertEqual(lightcurve[3][0], datetime.datetime(2010, 3, 6, 0, 0))
        self.assertAlmostEqual(lightcurve[0][2], 10.)
        self.assertAlmostEqual(lightcurve[1][2], 20.)
        self.assertAlmostEqual(lightcurve[2][2], 30.)
        self.assertAlmostEqual(lightcurve[3][2], 40.)

         #Check the summary statistics (avg flux, etc)
        query = """\
        SELECT rf.avg_f_int
              ,rf.avg_f_int_sq
              ,avg_weighted_f_int
              ,avg_f_int_weight
          FROM runningcatalog r
              ,runningcatalog_flux rf
         WHERE r.dataset = %(dataset)s
           AND r.id = rf.runcat
        ORDER BY r.wm_ra
        """
        self.database.cursor.execute(query, {'dataset': self.dataset.id})
        runcat_flux_entries = get_db_rows_as_dicts(self.database.cursor)
        self.assertEqual(len(runcat_flux_entries), len(lightcurves_sorted_by_ra))
        for idx, flux_summary in enumerate(runcat_flux_entries):
            py_results = db_subs.lightcurve_metrics(lightcurves_sorted_by_ra[idx])
            for key in flux_summary.keys():
                self.assertAlmostEqual(flux_summary[key], py_results[-1][key])

        #Now check the per-timestep statistics (variability indices)
        sorted_runcat_ids = columns_from_table('runningcatalog',
                                               where={'dataset':self.dataset.id},
                                               order='wm_ra')
        sorted_runcat_ids = [entry['id'] for entry in sorted_runcat_ids]

        for idx, rcid in enumerate(sorted_runcat_ids):
            db_indices = db_queries.get_assoc_entries(self.database,
                                                                   rcid)
            py_indices = db_subs.lightcurve_metrics(lightcurves_sorted_by_ra[idx])
            self.assertEqual(len(db_indices), len(py_indices))
            for nstep in range(len(db_indices)):
                for key in ('v_int', 'eta_int', 'f_datapoints'):
                    self.assertAlmostEqual(db_indices[nstep][key],
                                           py_indices[nstep][key],
                                           places=5)
Beispiel #2
0
    def test_lightcurve(self):
        # make 4 * 5 images with different date
        images = []
        for day in [3, 4, 5, 6]:
            data = {'taustart_ts': datetime.datetime(2010, 3, day),
                    'tau_time': 3600,
                    'url': '/',
                    'freq_eff': 80e6,
                    'freq_bw': 1e6,
                    'beam_smaj_pix': float(2.7),
                    'beam_smin_pix': float(2.3),
                    'beam_pa_rad': float(1.7),
                    'deltax': float(-0.01111),
                    'deltay': float(0.01111),
                    'centre_ra': 111,
                    'centre_decl': 11,
                    'xtr_radius' : 3
            }
            image = Image(dataset=self.dataset, data=data)
            images.append(image)

        # 3 sources per image, with different coordinates & flux
        data_list = []
        for i in range(1, 4):
            data_list.append({
                'ra': 111.11 + i,
                'decl': 11.11 + i,
                'ra_fit_err': 0.01,
                'decl_fit_err': 0.01,
                'ra_sys_err': 20,
                'decl_sys_err': 20,
                'i_peak': 10 * i ,
                'i_peak_err': 0.1
            #  x=0.11, y=0.22, z=0.33, det_sigma=11.1, zone=i
            })
        # Insert the 3 sources in each image, while further varying the flux
        for i, image in enumerate(images):
            # Create the "source finding results"
            # Note that we reuse 'i_peak' as both peak & integrated flux.
            sources = []
            for data in data_list:
                source = (data['ra'], data['decl'],
                     data['ra_fit_err'], data['decl_fit_err'],  # Gaussian fit errors
                     data['i_peak'] * (1 + i), data['i_peak_err'],  # Peak
                     data['i_peak'] * (1 + i), data['i_peak_err'],  # Integrated
                     10.,  # Significance level
                     1, 1,  0, # Beam params (width arcsec major, width arcsec minor, parallactic angle)
                     data['ra_sys_err'], data['decl_sys_err'])  # Systematic errors
                sources.append(source)

            # Insert the sources
            image.insert_extracted_sources(sources)

            # Run the association for each list of source for an image
            image.associate_extracted_sources(deRuiter_r=3.7)

        # updates the dataset and its set of images
        self.dataset.update()
        self.dataset.update_images()

        # update the images and their sets of sources
        for image in self.dataset.images:
            image.update()
            image.update_sources()
            # Now pick any image, select the first source (smallest RA)

        # and extract its light curve
        sources = self.dataset.images.pop().sources
        sources = sorted(sources, key=attrgetter('ra'))
        lightcurve = sources[0].lightcurve()

        # check if the sources are associated in all images
        self.assertEqual(len(images), len(lightcurve))
        self.assertEqual(lightcurve[0][0], datetime.datetime(2010, 3, 3, 0, 0))
        self.assertEqual(lightcurve[1][0], datetime.datetime(2010, 3, 4, 0, 0))
        self.assertEqual(lightcurve[2][0], datetime.datetime(2010, 3, 5, 0, 0))
        self.assertEqual(lightcurve[3][0], datetime.datetime(2010, 3, 6, 0, 0))
        self.assertAlmostEqual(lightcurve[0][2], 10.)
        self.assertAlmostEqual(lightcurve[1][2], 20.)
        self.assertAlmostEqual(lightcurve[2][2], 30.)
        self.assertAlmostEqual(lightcurve[3][2], 40.)

        # Since the light curves are very similar, only eta_nu is different
        results = dbtransients._select_updated_variability_indices(self.dataset.images[-1].id)
        results = sorted(results, key=itemgetter('eta_int'))
        for result, eta_nu in zip(results, (16666.66666667, 66666.666666667,
                                            150000.0)):
            self.assertEqual(result['f_datapoints'], 4)
            self.assertAlmostEqual(result['eta_int'], eta_nu)
            self.assertAlmostEqual(result['v_int'], 0.516397779494)
Beispiel #3
0
    def test_lightsurface(self):
        images = []
        # make 4 * 5 images with different frequencies and date
        for frequency in [80e6, 90e6, 100e6, 110e6, 120e6]:
            for day in [3, 4, 5, 6]:
                data = {'taustart_ts': datetime.datetime(2010, 3, day),
                        'tau_time': 3600,
                        'url': '/',
                        'freq_eff': frequency,
                        'freq_bw': 1e6,
                        'beam_smaj_pix': float(2.7),
                        'beam_smin_pix': float(2.3),
                        'beam_pa_rad': float(1.7),
                        'deltax': float(-0.01111),
                        'deltay': float(0.01111),
                        'centre_ra': 111,
                        'centre_decl': 11,
                        'xtr_radius' : 3
                }
                image = Image(dataset=self.dataset, data=data)
                images.append(image)

        # 3 sources per image, with different coordinates & flux
        data_list = []
        for i in range(1, 4):
            data_list.append({
                'ra': 111.111 + i,
                'decl': 11.11 + i,
                'ra_fit_err': 0.01,
                'decl_fit_err': 0.01,
                'ew_sys_err': 20,
                'ns_sys_err': 20,
                'i_peak': 10*i,
                'i_peak_err': 0.1,
                'error_radius': 10.0
                #  x=0.11, y=0.22, z=0.33, det_sigma=11.1, zone=i
            })

        # Insert the 3 sources in each image, while further varying the flux
        for i, image in enumerate(images):
            # Create the "source finding results"
            sources = []
            for data in data_list:
                source = (data['ra'], data['decl'],
                          data['ra_fit_err'], data['decl_fit_err'],
                          data['i_peak']*(1+i), data['i_peak_err'],
                          data['i_peak']*(1+i), data['i_peak_err'],
                          10., # Significance level
                          1, 1, 0, # Beam params (width arcsec major, width arcsec minor, parallactic angle)
                          data['ew_sys_err'], data['ns_sys_err'], # Systematic errors
                          data['error_radius'])
                sources.append(source)

            # Insert the sources
            image.insert_extracted_sources(sources)

            # Run the association for each list of source for an image
            image.associate_extracted_sources(deRuiter_r=3.7)

        # updates the dataset and its set of images
        self.dataset.update()
        self.dataset.update_images()

        # update the images and their sets of sources
        for image in self.dataset.images:
            image.update()
            image.update_sources()

        # Now pick any image, select the first source (smallest RA)
        # and extract its light curve

        # TODO: aaarch this is so ugly. Because this a set we need to pop it.
        sources = self.dataset.images.pop().sources
        #sources = self.dataset.images[-1].sources

        sources = sorted(sources, key=attrgetter('ra'))
        extracted_source = sources[0].id
        lightcurve = tkp.db.general.lightcurve(extracted_source)
Beispiel #4
0
    def test_lightsurface(self):
        images = []
        # make 4 * 5 images with different frequencies and date
        for frequency in [80e6, 90e6, 100e6, 110e6, 120e6]:
            for day in [3, 4, 5, 6]:
                img_data = db_subs.example_dbimage_data_dict(
                    taustart_ts=datetime.datetime(2010, 3, day),
                    freq_eff=frequency)
                image = Image(dataset=self.dataset, data=img_data)
                images.append(image)

        # 3 sources per image, with different coordinates & flux
        data_list = []
        for i in range(1, 4):
            data_list.append({
                'ra': 111.111 + i,
                'decl': 11.11 + i,
                'ra_fit_err': 0.01,
                'decl_fit_err': 0.01,
                'i_peak': 10. * i,
                'i_peak_err': 0.1,
                'error_radius': 10.0,
                'fit_type': 1,
                #  x=0.11, y=0.22, z=0.33, det_sigma=11.1, zone=i
            })

        # Insert the 3 sources in each image, while further varying the flux
        for i, image in enumerate(images):
            # Create the "source finding results"
            sources = []
            for data in data_list:
                source = db_subs.example_extractedsource_tuple(
                    ra=data['ra'],
                    dec=data['decl'],
                    ra_fit_err=data['ra_fit_err'],
                    dec_fit_err=data['decl_fit_err'],
                    peak=data['i_peak'] * (1 + i),
                    peak_err=data['i_peak_err'],
                    flux=data['i_peak'] * (1 + i),
                    flux_err=data['i_peak_err'],
                    fit_type=data['fit_type'])
                sources.append(source)

            # Insert the sources
            insert_extracted_sources(image._id, sources)

            # Run the association for each list of source for an image
            associate_extracted_sources(image._id,
                                        deRuiter_r=3.7,
                                        new_source_sigma_margin=3)

        # updates the dataset and its set of images
        self.dataset.update()
        self.dataset.update_images()

        # update the images and their sets of sources
        for image in self.dataset.images:
            image.update()
            image.update_sources()

        # Now pick any image, select the first source (smallest RA)
        # and extract its light curve

        # TODO: aaarch this is so ugly. Because this a set we need to pop it.
        sources = self.dataset.images.pop().sources
        #sources = self.dataset.images[-1].sources

        sources = sorted(sources, key=attrgetter('ra'))
        extracted_source = sources[0].id
        lightcurve = tkp.db.general.lightcurve(extracted_source)
Beispiel #5
0
    def test_lightsurface(self):
        images = []
        # make 4 * 5 images with different frequencies and date
        for frequency in [80e6, 90e6, 100e6, 110e6, 120e6]:
            for day in [3, 4, 5, 6]:
                img_data = db_subs.example_dbimage_data_dict(
                    taustart_ts=datetime.datetime(2010, 3, day),
                    freq_eff = frequency
                )
                image = Image(dataset=self.dataset, data=img_data)
                images.append(image)

        # 3 sources per image, with different coordinates & flux
        data_list = []
        for i in range(1, 4):
            data_list.append({
                'ra': 111.111 + i,
                'decl': 11.11 + i,
                'ra_fit_err': 0.01,
                'decl_fit_err': 0.01,
                'i_peak': 10.*i,
                'i_peak_err': 0.1,
                'error_radius': 10.0,
                'fit_type': 1,
                #  x=0.11, y=0.22, z=0.33, det_sigma=11.1, zone=i
            })

        # Insert the 3 sources in each image, while further varying the flux
        for i, image in enumerate(images):
            # Create the "source finding results"
            sources = []
            for data in data_list:
                source = db_subs.example_extractedsource_tuple(
                        ra=data['ra'], dec=data['decl'],
                        ra_fit_err=data['ra_fit_err'],
                        dec_fit_err= data['decl_fit_err'],
                        peak = data['i_peak']*(1+i),
                        peak_err = data['i_peak_err'],
                        flux = data['i_peak']*(1+i),
                        flux_err = data['i_peak_err'],
                        fit_type=data['fit_type']
                        )
                sources.append(source)

            # Insert the sources
            insert_extracted_sources(image._id, sources)

            # Run the association for each list of source for an image
            associate_extracted_sources(image._id, deRuiter_r=3.7,
                                        new_source_sigma_margin=3)

        # updates the dataset and its set of images
        self.dataset.update()
        self.dataset.update_images()

        # update the images and their sets of sources
        for image in self.dataset.images:
            image.update()
            image.update_sources()

        # Now pick any image, select the first source (smallest RA)
        # and extract its light curve

        # TODO: aaarch this is so ugly. Because this a set we need to pop it.
        sources = self.dataset.images.pop().sources
        #sources = self.dataset.images[-1].sources

        sources = sorted(sources, key=attrgetter('ra'))
        extracted_source = sources[0].id
        lightcurve = tkp.db.general.lightcurve(extracted_source)