def main():
    real_data = read_training_data(TL_REAL_IMAGES_RELATIVE_PATH)
    clf = TLClassifier()
    labels = []
    predictions = []
    print "Real"
    for image, image_id, color_label in real_data:
        color_prediction = clf.get_classification(image)
        labels.append(color_label)
        predictions.append(color_prediction)

        print("Image: ", image_id, " Label: ", get_color_name(color_label),
              " Prediction: ", get_color_name(color_prediction))

    sim_data = read_training_data(TL_SIM_IMAGES_RELATIVE_PATH)
    print "Simulation"
    for image, image_id, color_label in sim_data:
        color_prediction = clf.get_classification(image)
        labels.append(color_label)
        predictions.append(color_prediction)

        print("Image: ", image_id, " Label: ", get_color_name(color_label),
              " Prediction: ", get_color_name(color_prediction))

    print("Accuracy: ", accuracy_score(labels, predictions))
    print("Total: ", len(labels), " Correct: ",
          accuracy_score(labels, predictions, normalize=False))
    print("Confusion Matrix: ", confusion_matrix(labels, predictions))
    def __init__(self):
        rospy.init_node('tl_detector')

        self.pose = None
        self.waypoints = None
        self.camera_image = None
        self.has_image = False
        self.lights = []

        self.bridge = CvBridge()
        self.light_classifier = None
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        self.waypoints_2d = None
        self.waypoint_tree = None

        self.img_count = 0

        # Set if using real car
        self.is_site = False

        self.light_classifier = TLClassifier(self.is_site)

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)
        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray,
                                self.traffic_cb)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        # May want to use image_raw instead for classifier?
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        detector_rate = rospy.Rate(5)
        while not rospy.is_shutdown():
            self.find_traffic_lights()
            detector_rate.sleep()
Beispiel #3
0
class TLClassifierTestNode(object):
    """
    ros node for traffic light classifier testing, it listens to the camera images and publishes the detection result image
    """
    def __init__(self, node_name, inference_file, label_map_file, num_classes, input_image_topic, output_image_topic):
        # create the ros node
        rospy.init_node(node_name)

        self.bridge = CvBridge()
        self.category_index = load_category_index(label_map_file, num_classes)

        # create the traffic light classifier
        self.classifier = TLClassifier(inference_file)

        # create the publisher to publish result out
        self.classification_publisher = rospy.Publisher(output_image_topic, ImageMessage, queue_size=1)

        # listen to color image
        rospy.Subscriber(input_image_topic, ImageMessage, self.image_color_cb, queue_size=1)

        # keep the loop running
        rospy.spin()

    def image_color_cb(self, image_message):
        """callback function when color image arrives"""
        self.process_message(image_message)

    def process_message(self, message):
        """ process the image message, and publish out the detection result as image """
        cv_image = self.bridge.imgmsg_to_cv2(message, desired_encoding="rgb8")
        detection = self.classifier.infer_image(cv_image)
        draw_detection_on_image(cv_image, detection, self.category_index)

        result_message = self.bridge.cv2_to_imgmsg(cv_image, encoding="rgb8")
        self.classification_publisher.publish(result_message)
Beispiel #4
0
    def __init__(self, node_name, inference_file, label_map_file, num_classes, input_image_topic, output_image_topic):
        # create the ros node
        rospy.init_node(node_name)

        self.bridge = CvBridge()
        self.category_index = load_category_index(label_map_file, num_classes)

        # create the traffic light classifier
        self.classifier = TLClassifier(inference_file)

        # create the publisher to publish result out
        self.classification_publisher = rospy.Publisher(output_image_topic, ImageMessage, queue_size=1)

        # listen to color image
        rospy.Subscriber(input_image_topic, ImageMessage, self.image_color_cb, queue_size=1)

        # keep the loop running
        rospy.spin()
Beispiel #5
0
    def __init__(self):
        rospy.init_node('tl_detector')

        self.config = yaml.load(rospy.get_param("/traffic_light_config"))
        self.is_simulator = not self.config["is_site"]
        
        #self.process_image_fn = self.process_image_test()
        self.process_image_fn = self.process_image_sim if self.is_simulator else self.process_image

        self.wp_control = WPControl(self.config)

        self.light_classifier = TLClassifier(self.is_simulator)

        self.pose = None
        self.camera_image = None
        self.lights = []
		
        rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        rospy.Subscriber('/base_waypoints', Lane, self.wp_control.waypoints_cb)
        rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb)
        rospy.Subscriber('/image_color', Image, self.image_cb)
        
        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1)

        self.bridge = CvBridge()

        self.state = TrafficLight.UNKNOWN
        self.last_wp_i = -1
        self.state_count = 0

        self.stop_line_i = 0 #test
        
        self.i_count = -1

        self.start_classification = False

        self.check_count = I_COUNT_CHECK
        self.sl_distance = 1000
        self.diff = -10

        self.loop()
Beispiel #6
0
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.config = yaml.load(rospy.get_param("/traffic_light_config"))
        self.is_simulator = not self.config["is_site"]
        
        #self.process_image_fn = self.process_image_test()
        self.process_image_fn = self.process_image_sim if self.is_simulator else self.process_image

        self.wp_control = WPControl(self.config)

        self.light_classifier = TLClassifier(self.is_simulator)

        self.pose = None
        self.camera_image = None
        self.lights = []
		
        rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        rospy.Subscriber('/base_waypoints', Lane, self.wp_control.waypoints_cb)
        rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb)
        rospy.Subscriber('/image_color', Image, self.image_cb)
        
        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1)

        self.bridge = CvBridge()

        self.state = TrafficLight.UNKNOWN
        self.last_wp_i = -1
        self.state_count = 0

        self.stop_line_i = 0 #test
        
        self.i_count = -1

        self.start_classification = False

        self.check_count = I_COUNT_CHECK
        self.sl_distance = 1000
        self.diff = -10

        self.loop()


    def loop(self):
        rate = rospy.Rate(10)
        while not self.wp_control.is_ready():
            #print("is not ready")
            rate.sleep()

        while not rospy.is_shutdown():
            '''Publish upcoming red lights at camera frequency.'''
            if self.pose is not None:
                light_wp_i = self.get_next_traffic_light()
                if not self.start_classification:
                    self.state_count = 0
                    self.last_wp_i = -1
                    self.upcoming_red_light_pub.publish(Int32(self.last_wp_i))
                else:
                    if self.state_count >= STATE_COUNT_THRESHOLD:
                        if self.state != TrafficLight.RED: light_wp_i = -1                               
                        self.last_wp_i = light_wp_i
                        self.upcoming_red_light_pub.publish(Int32(self.last_wp_i))
                    else:
                        self.upcoming_red_light_pub.publish(Int32(self.last_wp_i))
                      
                    #print("SP: State: ", self.state, " Count: ", self.state_count, " Last wp i:" , self.last_wp_i, " stop line i: ", self.stop_line_i)            

            rate.sleep()

    def pose_cb(self, msg):
        self.pose = msg


    def traffic_cb(self, msg):
        self.lights = msg.lights


    def image_cb(self, msg):
        """ Camera images receiver """
        #self.start_classification = True
        self.camera_image = msg
        if not self.start_classification: 
            self.state = TrafficLight.UNKNOWN
            self.i_count = -1
        else: 
            self.process_image_fn()


    def process_image_test(self):
        cur_img_state = self.get_test_light_state() 
        if self.state != cur_img_state:
            self.state_count = 0
            self.state = cur_img_state
        else:
            self.state_count += 1    


    def process_image_sim(self):
        self.i_count += 1
        #process every `self.check_count` image 
        if ( self.i_count % self.check_count == 0 ) :                    
            cur_img_state = self.classify_light_image()
            self.process_classified_image_state(cur_img_state)


    def process_image(self):                  
        cur_img_state = self.classify_light_image()
        self.process_classified_image_state(cur_img_state)
  

    def classify_test_light_image(self):
        """ Determines the current color of the traffic light """
        if( len(self.lights) == 0  ): return TrafficLight.UNKNOWN
        # test detection: /vehicle/traffic_lights topic
        return self.lights[self.stop_line_i].state  


    def classify_light_image(self):
        """ Determines the current color of the traffic light  """
        if( self.camera_image is None ): return TrafficLight.UNKNOWN
        cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")
        # Classification
        return self.light_classifier.get_classification(cv_image) 


    def process_classified_image_state(self, cur_img_state):
        """ Process classified light image state to find current state"""
        #self.print_img_color(cur_img_state)
        #default is red
        if self.state == TrafficLight.UNKNOWN and cur_img_state == TrafficLight.UNKNOWN:
            self.state = TrafficLight.RED
            cur_img_state = TrafficLight.RED

        if self.state != TrafficLight.UNKNOWN and cur_img_state == TrafficLight.UNKNOWN:
            cur_img_state = self.state
        elif self.state != cur_img_state:
            self.state_count = 0
            self.state = cur_img_state
        else:
            self.state_count += 1  

    def print_img_color(self, cur_img_state):
        r_map = { TrafficLight.GREEN: "Green", TrafficLight.RED: "Red", TrafficLight.YELLOW: "Yellow" }
        print("Classification Result: ", r_map.get(cur_img_state, "Unknown"))


    def get_next_traffic_light(self):
        """ Finds closest visible traffic light, if one exists """
        current_wp_i = self.wp_control.get_closest_wp([self.pose.pose.position.x, self.pose.pose.position.y])[1]

        self.sl_distance, self.stop_line_i = self.wp_control.get_closest_stop_line(self.pose.pose.position)

        stop_line_wp_i = self.wp_control.get_stop_line_wp_i(self.stop_line_i)

        self.diff = stop_line_wp_i - current_wp_i

        #print("Closst light Diff: ", self.diff, " stop line i:", self.stop_line_i, " sl-distance: ", self.sl_distance)
        self.start_classification = ( self.diff > -5 and self.sl_distance < 50 )

        return stop_line_wp_i
Beispiel #7
0
from tl_classifier import TLClassifier
import cv2
import sys
import os

classifier = TLClassifier("sim_model.h5")
print(sys.argv[1])
image = cv2.imread(sys.argv[1], cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
print(classifier.get_classification(image, "out.jpg"))
class TLDetector(object):
    def __init__(self):
        rospy.init_node('tl_detector')

        self.pose = None
        self.waypoints = None
        self.camera_image = None
        self.has_image = False
        self.lights = []

        self.bridge = CvBridge()
        self.light_classifier = None
        self.listener = tf.TransformListener()

        self.state = TrafficLight.UNKNOWN
        self.last_state = TrafficLight.UNKNOWN
        self.last_wp = -1
        self.state_count = 0

        self.waypoints_2d = None
        self.waypoint_tree = None

        self.img_count = 0

        # Set if using real car
        self.is_site = False

        self.light_classifier = TLClassifier(self.is_site)

        sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb)
        sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb)
        '''
        /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and
        helps you acquire an accurate ground truth data source for the traffic light
        classifier by sending the current color state of all traffic lights in the
        simulator. When testing on the vehicle, the color state will not be available. You'll need to
        rely on the position of the light and the camera image to predict it.
        '''
        sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray,
                                self.traffic_cb)

        config_string = rospy.get_param("/traffic_light_config")
        self.config = yaml.load(config_string)

        # May want to use image_raw instead for classifier?
        sub6 = rospy.Subscriber('/image_color', Image, self.image_cb)

        self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint',
                                                      Int32,
                                                      queue_size=1)

        detector_rate = rospy.Rate(5)
        while not rospy.is_shutdown():
            self.find_traffic_lights()
            detector_rate.sleep()

    def pose_cb(self, msg):
        self.pose = msg

    def waypoints_cb(self, waypoints):
        self.waypoints = waypoints
        # Setup the Kd Tree which has log(n) complexity
        if not self.waypoints_2d:
            self.waypoints_2d = [[
                waypoint.pose.pose.position.x, waypoint.pose.pose.position.y
            ] for waypoint in waypoints.waypoints]
            self.waypoint_tree = KDTree(self.waypoints_2d)

    def traffic_cb(self, msg):
        self.lights = msg.lights

    def save_img(self, light, state):
        # Thanks to https://github.com/ericlavigne/CarND-Capstone-Wolf-Pack for the idea to save images in this way
        # To build up the training set

        if SAVE_TRAFFIC_LIGHT_IMG and self.has_image:  # self.img_count to reduce image save

            file_name = "IMG_" + str(time.time()).replace('.', '') + '.jpg'
            cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")

            img_path = '/home/student/Udacity/tl_classifier/training_data/light_classification/IMGS/'

            if state == 0:
                if self.img_count % 10 == 0:
                    img_path = img_path + "RED/" + file_name
                    cv2.imwrite(img_path, cv_image,
                                [int(cv2.IMWRITE_JPEG_QUALITY), 100])
                    rospy.loginfo("Path: {0}".format(img_path))
            elif state == 1:
                img_path = img_path + "YELLOW/" + file_name
                cv2.imwrite(img_path, cv_image,
                            [int(cv2.IMWRITE_JPEG_QUALITY), 100])
                rospy.loginfo("Path: {0}".format(img_path))
            elif state == 2:
                if self.img_count % 10 == 0:
                    img_path = img_path + "GREEN/" + file_name
                    cv2.imwrite(img_path, cv_image,
                                [int(cv2.IMWRITE_JPEG_QUALITY), 100])
                    rospy.loginfo("Path: {0}".format(img_path))
            else:
                img_path = img_path + "UNKNOWN/" + file_name
                cv2.imwrite(img_path, cv_image,
                            [int(cv2.IMWRITE_JPEG_QUALITY), 100])
                rospy.loginfo("Path: {0}".format(img_path))

            self.img_count += 1

    def image_cb(self, msg):
        """ updates the current image
        Args:
            msg (Image): image from car-mounted camera
        """
        self.has_image = True
        self.camera_image = msg
        # Process traffic lights?

    def find_traffic_lights(self):
        """Identifies red lights in the incoming camera image and publishes the index
            of the waypoint closest to the red light's stop line to /traffic_waypoint
        Args:
            msg (Image): image from car-mounted camera
        """

        #if self.light_classifier and self.has_image == True:
        #    if self.is_site:# site package
        # save real track images.
        #        self.save_img(self.camera_image, 4)

        light_wp, state = self.process_traffic_lights()
        # rospy.logwarn("Closest light wp: {0} \n And light state: {1}".format(light_wp, state))
        '''
        Publish upcoming red lights at camera frequency.
        Each predicted state has to occur `STATE_COUNT_THRESHOLD` number
        of times till we start using it. Otherwise the previous stable state is
        used.
        '''
        if self.state != state:
            self.state_count = 0
            self.state = state
        elif self.state_count >= STATE_COUNT_THRESHOLD:
            self.last_state = self.state
            light_wp = light_wp if state == TrafficLight.RED else -1
            self.last_wp = light_wp
            self.upcoming_red_light_pub.publish(Int32(light_wp))
        else:
            self.upcoming_red_light_pub.publish(Int32(self.last_wp))
        self.state_count += 1

    def get_closest_waypoint(self, x, y):
        """Identifies the closest path waypoint to the given position
            https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
        Args:
            pose (Pose): position to match a waypoint to
        Returns:
            int: index of the closest waypoint in self.waypoints
        """
        closest_idx = None
        if self.waypoint_tree:
            closest_idx = self.waypoint_tree.query([x, y], 1)[1]

        return closest_idx

    def get_light_state(self, light):
        """Determines the current color of the traffic light
        Args:
            light (TrafficLight): light to classify
        Returns:
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)
        """
        # Assume RED
        TLstate = 0

        if (self.has_image):
            try:
                # Convert image into something usable
                cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8")
                image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
                image = cv2.resize(image, (32, 64))
                image_array = np.asarray(image)

                # Get classification
                TLstate = self.light_classifier.get_classification(
                    image_array[None, :, :, :])
                #rospy.loginfo("TL State: {0}, Actual State: {1}".format(TLstate, light.state))
            except:
                #rospy.loginfo("Could not identify TL State - assuming RED")
                TLstate = 0

        # Return light state
        return TLstate
        # for testing we return the light state from the simulator
        #return light.state

    def process_traffic_lights(self):
        """Finds closest visible traffic light, if one exists, and determines its
            location and color
        Returns:
            int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists)
            int: ID of traffic light color (specified in styx_msgs/TrafficLight)
        """
        # light = None

        # List of positions that correspond to the line to stop in front of for a given intersection
        # stop_line_positions = self.config['stop_line_positions']
        # if(self.pose):
        #    car_position = self.get_closest_waypoint(self.pose.pose)

        # TODO find the closest visible traffic light (if one exists)

        closest_light = None
        line_wp_idx = None

        # List of positions that correspond to the line to stop in front of for a given intersection
        stop_line_positions = self.config['stop_line_positions']
        if self.pose and self.waypoints:
            car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x,
                                                   self.pose.pose.position.y)

            # if can not get the car pose , break
            if not car_wp_idx:
                return -1, TrafficLight.UNKNOWN

            min_diff = min(len(self.waypoints.waypoints),
                           TL_DETECTION_DISTANCE)
            for i, light in enumerate(self.lights):
                # Get stop line waypoint index
                line = stop_line_positions[i]
                temp_wp_idx = self.get_closest_waypoint(line[0],
                                                        line[1])  # x,y
                # Find closest step line waypoint index
                d = temp_wp_idx - car_wp_idx
                if d >= 0 and d < min_diff:
                    min_diff = d
                    closest_light = light
                    line_wp_idx = temp_wp_idx

                    # DEBUG
                    if d < 70:  # when close traffic light , save image
                        # To save training image
                        self.save_img(self.camera_image, light.state)

        if closest_light:
            state = self.get_light_state(closest_light)
            #rospy.loginfo('closest light wp %i with color %i', line_wp_idx, state )
            return line_wp_idx, state
        else:
            return -1, TrafficLight.UNKNOWN
Beispiel #9
0
import cv2

import os, sys, inspect
currentdir = os.path.dirname(
    os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)

from tl_classifier import TLClassifier

# path to the frozen tensorflow model (protobuf)
model_file = currentdir + "/../../models/frozen_classifier_model.pb"

# create classifier by reading the frozen model file
light_classifier = TLClassifier(model_file)

# test images (cutout of a detected traffic light)
image_files = [
    "sample_tl_cutout_yellow_1.png", "traffic_light_red_1.png",
    "traffic_light_green_1.png", "traffic_light_red_2.png"
]

# classify every sample image and print the results
for image_file in image_files:

    image = cv2.imread(currentdir + "/" + image_file)
    print("----")
    print("classifying image " + image_file)
    print("shape of input image: " + str(image.shape))

    # classify cutout image
#!/usr/bin/env python

from tl_classifier import TLClassifier
import cv2 as cv

if __name__ == '__main__':
    classifier = TLClassifier()
    img = cv.imread('image.png')

    # hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)
    # cv.imshow('test image', img)
    # h, s, v = cv.split(hsv)

    # h[h > 240] = 255
    # h[h < 15] = 255
    # h[h != 255] = 0
    # # cv.imshow('test h', h)
    # s[s > 150] = 255
    # s[s != 255] = 0
    # # cv.imshow('test s', s)
    # v[v > 200] = 255
    # v[v != 255] = 0
    # # cv.imshow('test v', v)

    # thres = cv.bitwise_and(cv.bitwise_and(h, s), v)
    # cv.imshow('test thres', thres)

    # nonzero = cv.countNonZero(thres)
    # print(nonzero)

    print(classifier.get_classification(img, 0.5))
Beispiel #11
0
from  tl_classifier import TLClassifier
import numpy as np
import cv2
from cv_bridge import CvBridge
import glob

light_classifier = TLClassifier(0.3 ,1.5 ,False)
pathlist = glob.glob("/home/student/Desktop/TrafficClassification/*.jpg")
print(pathlist)

#Path ='/home/student/Desktop/TrafficClassification/TEST.jpg'

for Path in pathlist:
	cv_image = cv2.imread(Path)
	
	processed_img = cv_image[0:600, 0:800] # was [20:400, 0:800]  
	#Convert image to RGB format
	processed_img = cv2.cvtColor(processed_img, cv2.COLOR_BGR2RGB)


	img_full_np = light_classifier.load_image_into_numpy_array(processed_img)

	print("Get in Localization-Classification")
	b, conf, cls_idx = light_classifier.get_localization_classification(img_full_np, visual=False)
	if np.array_equal(b, np.zeros(4)):
		print ('unknown')
		unknown = True
	else:
		if cls_idx == 1.0:
			print('Green', b)
			#light_state = TrafficLight.GREEN
Beispiel #12
0
import os
import time
from shutil import copyfile

from PIL import ImageDraw, ImageFont
from keras.preprocessing.image import load_img
from pathlib2 import Path

from tl_classifier import TLClassifier, load_image_into_numpy_array
import tensorflow as tf

tl_classifier = TLClassifier()
tf_colors = ['red', 'yellow', 'green', None, 'unknown']
output_base_path = './output_images/'

for color in tf_colors:
    if color:
        dirname = os.path.dirname(output_base_path + color + '/')
        path = Path(dirname)
        path.mkdir(exist_ok=True, parents=True)

cnt_error = 0
cnt_ok = 0

idx = 0
for root, dirs, files in os.walk("images", topdown=False):
    for filename in files:
        if filename.startswith('.DS_Store'):
            continue
        path = root + '/' + filename
        print('start processing...{}'.format(path))
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 21 08:16:48 2018

@author: Danilo Canivel
This need to be runned at the cli just when you want to generate a new trained model
"""
from tl_classifier import TLClassifier

clf = TLClassifier(for_real=False)

test_red = [
    '../../../../data/trafficlights/google/red1.png',
    '../../../../data/trafficlights/google/red2.png'
]

test_green = [
    '../../../../data/trafficlights/google/green1.jpg',
    '../../../../data/trafficlights/google/green2.png',
    '../../../../data/trafficlights/google/green3.png'
]

test_yellow_single = '../../../../data/trafficlights/google/yellow1.png'

test_red_yellow = [
    '../../../../data/trafficlights/google/red1.png',
    '../../../../data/trafficlights/google/yellow2.png',
    '../../../../data/trafficlights/google/red2.png',
]

print('Testing RED')
Beispiel #14
0
from tl_classifier import TLClassifier
from matplotlib import pyplot as plt

classifier = TLClassifier(False)  #run in sim mode
import cv2
image = cv2.imread('data/test_images_sim/left0988.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.show()

result = classifier.get_classification(image)
print('result: ', result)

from tl_classifier import TLClassifier
from scipy import misc
from os import path
from glob import glob
import random


def all_files(folder):
    files = list(glob(path.join(folder, "*.jpg")))
    return files


model = TLClassifier("models/tl_model")

green = [
    misc.imread(f)
    for f in all_files("../../data/camera_training/validation/green/")
]
red = [
    misc.imread(f)
    for f in all_files(".../../data/camera_training/validation/red/")
]
yellow = [
    misc.imread(f)
    for f in all_files("../../data/camera_training/validation/yellow/")
]
nolight = [
    misc.imread(f)
    for f in all_files("../../data/camera_training/validation/nolight/")
]
Beispiel #16
0
class TestHarness():
    def __init__(self):
        self.light_classifier = TLClassifier()

    def get_light_state(self, cv_image):
        return self.light_classifier.get_test_classification(cv_image)
Beispiel #17
0
import matplotlib.pyplot as plt
import matplotlib.animation as animation

from tl_classifier import TLClassifier

with open('TLD20180319-3-site.p', 'rb') as f:
    u = pickle._Unpickler(f)
    u.encoding = 'latin1'
    gt = u.load()
keys = sorted(gt.keys())

tld_classes = ['RED', 'YELLOW', 'GREEN', 'unknown']
tld_color = ['red', 'yellow', 'green', 'grey']

if __name__ == '__main__':
    light_classifier = TLClassifier()

    count = 0
    #fig, ax = plt.subplots(1, 1)
    #    plt.ion()
    fig, ax = plt.subplots()
    testlist = sorted(
        set.union(set(range(270, 410, 2)), set(range(650, 740, 2)),
                  set(range(1005, 1085, 2))))
    #for i in testlist:
    #for i in range(250, 1150, 5):
    for i in range(250, 1150):
        #for i in range(50, 710, 2):
        inputs = []
        images = []
        img_basename = 'frame{:06d}.png'.format(i)
Beispiel #18
0
 def __init__(self):
     self.light_classifier = TLClassifier()
            if 3 < yspan < 30 and 3 < xspan < 30:
                if 0.8 < float(yspan) / xspan < 1.2 and np.sum(
                        residual) / xspan > 900:
                    #plt.imshow(result)
                    #plt.title('Colors')
                    #plt.show()
                    #plt.imsave(str(uuid.uuid4())+".jpg",result)
                    #residual[residual > 0] = 100
                    return True
        return False


DEBUG = False
if DEBUG == True:
    tl = TLIdentifier(1, 'ALL', './traffic_light_identifier.h5')
    tlc = TLClassifier('./traffic_light_classifier.h5')
    #    TL.resize_images('./images/unknown/','./images/resizeunknown/')
    images = tl.read_image_files(
        '/home/student/catkin_ws/src/CarND-Capstone/ros/src/tl_detector/light_classification/images/training/misses/'
    )
    tl.set_window(0, 800, 100, 600)
    for image in images:
        fimage = mpimg.imread(image)
        plt.imshow(fimage)
        plt.show()

        fnd, result = tl.process_image(fimage)

        if fnd == True:
            plt.imshow(result)
            plt.show()
Beispiel #20
0
            yield shuffle(tmp_features, tmp_labels)


# ======== MAIN ========
feature_shape = [150, 200, 3]

labeler = Labeler("rb")
data = labeler.load()
data["features"] = data["features"].reshape([-1] + feature_shape)

print("Labels: " + str(data["labels"].size))
print("Features: " + str(data["features"].size))
print("Shape: " + str(data["features"].shape))

for img, label in zip(data["features"], data["labels"]):
    classifier = TLClassifier()
    result = classifier.get_classification(img)
    # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = np.array(img)[:, :, 2]
    cv2.medianBlur(gray, 7)
    circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, dp=1.0, minDist=5,
                               param1=100, param2=15, minRadius=3, maxRadius=10)
    if circles is not None:
        circles = np.uint16(np.around(circles))
        center_dots = []
        for i in circles[0, :]:
            # draw the outer circle
            cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)
            # draw the center of the circle
            cv2.circle(img, (i[0], i[1]), 2, (0, 0, 255), 3)
            center_dots.append(img[i[1], i[0]])