Beispiel #1
0
def persistence_image_add(Z2,
                          Z1,
                          new_fig=True,
                          subplot=111,
                          xlims=None,
                          ylims=None,
                          norm=True,
                          vmin=0,
                          vmax=2.,
                          cmap=jet_map,
                          **kwargs):
    """Takes as input two images as exported from the gaussian kernel
       plotting function, and plots their addition.
    """
    if xlims is None or xlims is None:
        xlims, ylims = ((0, 100), (0, 100))

    addition = analysis.get_image_add_data(Z1, Z2, norm=norm)
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)
    ax.imshow(_np.rot90(addition),
              vmin=vmin,
              vmax=vmax,
              cmap=cmap,
              interpolation='bilinear',
              extent=xlims + ylims)

    kwargs['xlim'] = xlims
    kwargs['ylim'] = ylims
    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #2
0
def diagram(ph,
            new_fig=True,
            subplot=False,
            color='b',
            alpha=1.0,
            edgecolors='black',
            s=30,
            **kwargs):
    """
    Generates a 2d figure (ph diagram) of the persistent homology of a tree.
    """
    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)

    bounds_max = _np.max(_np.max(ph))
    bounds_min = _np.min(_np.min(ph))
    _cm.plt.plot([bounds_min, bounds_max], [bounds_min, bounds_max], c='black')

    ax.scatter(_np.array(ph)[:, 0],
               _np.array(ph)[:, 1],
               c=color,
               alpha=alpha,
               edgecolors=edgecolors,
               s=s)

    kwargs['title'] = kwargs.get('title', 'Persistence diagram')
    kwargs['xlabel'] = kwargs.get('xlabel', 'End radial distance from soma')
    kwargs['ylabel'] = kwargs.get('ylabel', 'Start radial distance from soma')

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #3
0
def all_trunks3d(nrn,
                 new_fig=True,
                 new_axes=True,
                 subplot=False,
                 neurite_type='all',
                 N=10,
                 **kwargs):
    '''Generates a figure of the neuron,
    that contains a soma and a list of trees.

    Parameters
    ----------
    neuron: Neuron
        neurom.Neuron object
    '''
    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig,
                             new_axes=new_axes,
                             subplot=subplot,
                             params={'projection': '3d'})

    kwargs['new_fig'] = False
    kwargs['new_axes'] = False
    kwargs['subplot'] = subplot

    soma3d(nrn.soma, **kwargs)

    to_plot = []

    if neurite_type == 'all':
        to_plot = nrn.neurites
    else:
        for neu_type in neurite_type:
            to_plot = to_plot + getattr(nrn, neu_type)

    for temp_tree in to_plot:

        trunk3d(temp_tree, N=N, **kwargs)

    kwargs['title'] = kwargs.get('title', nrn.name)
    kwargs['xlim'] = kwargs.get(
        'xlim',
        [nrn.soma.get_center()[0] - 2. * N,
         nrn.soma.get_center()[0] + 2. * N])

    kwargs['ylim'] = kwargs.get(
        'ylim',
        [nrn.soma.get_center()[1] - 2. * N,
         nrn.soma.get_center()[1] + 2. * N])

    kwargs['zlim'] = kwargs.get(
        'zlim',
        [nrn.soma.get_center()[2] - 2. * N,
         nrn.soma.get_center()[2] + 2. * N])

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #4
0
def all_trunks(nrn,
               plane='xy',
               new_fig=True,
               subplot=False,
               hadd=0.0,
               vadd=0.0,
               neurite_type='all',
               N=10,
               **kwargs):
    '''Generates a 2d figure of the neuron,
    that contains a soma and a list of trees.

    Parameters
    ----------
    neuron: Neuron
        neurom.Neuron object
    '''
    if plane not in ('xy', 'yx', 'xz', 'zx', 'yz', 'zy'):
        return None, 'No such plane found! Please select one of: xy, xz, yx, yz, zx, zy.'

    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)

    kwargs['new_fig'] = False
    kwargs['subplot'] = subplot

    soma(nrn.soma, plane=plane, hadd=hadd, vadd=vadd, **kwargs)

    to_plot = []

    if neurite_type == 'all':
        to_plot = nrn.neurites
    else:
        for neu_type in neurite_type:
            to_plot = to_plot + getattr(nrn, neu_type)

    for temp_tree in to_plot:

        trunk(temp_tree, N=N, **kwargs)

    kwargs['title'] = kwargs.get('title', nrn.name)
    kwargs['xlabel'] = kwargs.get('xlabel', plane[0])
    kwargs['ylabel'] = kwargs.get('ylabel', plane[1])

    kwargs['xlim'] = kwargs.get(
        'xlim',
        [nrn.soma.get_center()[0] - 2. * N,
         nrn.soma.get_center()[0] + 2. * N])

    kwargs['ylim'] = kwargs.get(
        'ylim',
        [nrn.soma.get_center()[1] - 2. * N,
         nrn.soma.get_center()[1] + 2. * N])

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #5
0
def population3d(pop, new_fig=True, new_axes=True, subplot=False, **kwargs):
    '''Generates a figure of the population,
    that contains the pop somata and a set of list of trees.

    Parameters
    ----------
    pop: Population
        neurom.Population object
    '''
    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig,
                             new_axes=new_axes,
                             subplot=subplot,
                             params={'projection': '3d'})

    kwargs['new_fig'] = False
    kwargs['new_axes'] = False
    kwargs['subplot'] = subplot

    h = []
    v = []
    d = []

    for nrn in pop.neurons:
        # soma3d(nrn.soma, **kwargs)
        for temp_tree in nrn.neurites:
            bounding_box = temp_tree.get_bounding_box()
            h.append([
                bounding_box[0][_utils.term_dict['x']],
                bounding_box[1][_utils.term_dict['x']]
            ])
            v.append([
                bounding_box[0][_utils.term_dict['y']],
                bounding_box[1][_utils.term_dict['y']]
            ])
            d.append([
                bounding_box[0][_utils.term_dict['z']],
                bounding_box[1][_utils.term_dict['z']]
            ])
            tree3d(temp_tree, **kwargs)

    kwargs['title'] = kwargs.get('title', '')
    white_space = _get_default('white_space', **kwargs)
    kwargs['xlim'] = kwargs.get(
        'xlim', [_np.min(h) - white_space,
                 _np.max(h) + white_space])
    kwargs['ylim'] = kwargs.get(
        'ylim', [_np.min(v) - white_space,
                 _np.max(v) + white_space])
    kwargs['zlim'] = kwargs.get(
        'zlim', [_np.min(d) - white_space,
                 _np.max(d) + white_space])

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #6
0
def soma(sm,
         plane='xy',
         new_fig=True,
         subplot=False,
         hadd=0.0,
         vadd=0.0,
         **kwargs):
    '''Generates a 2d figure of the soma.

    Parameters
    ----------
    soma: Soma
        neurom.Soma object
    '''
    treecolor = kwargs.get('treecolor', None)
    outline = kwargs.get('outline', True)

    if plane not in ('xy', 'yx', 'xz', 'zx', 'yz', 'zy'):
        return None, 'No such plane found! Please select one of: xy, xz, yx, yz, zx, zy.'

    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)

    # Definition of the tree color depending on the tree type.
    treecolor = _cm.get_color(treecolor, tree_type='soma')

    # Plot the outline of the soma as a circle, is outline is selected.
    if not outline:
        soma_circle = _cm.plt.Circle(sm.get_center() + [hadd, vadd, 0.0],
                                     sm.get_diameter() / 2.,
                                     color=treecolor,
                                     alpha=_get_default('alpha', **kwargs))
        ax.add_artist(soma_circle)
    else:
        horz = getattr(sm, plane[0]) + hadd
        vert = getattr(sm, plane[1]) + vadd

        horz = _np.append(
            horz, horz[0]) + hadd  # To close the loop for a soma viewer.
        vert = _np.append(
            vert, vert[0]) + vadd  # To close the loop for a soma viewer.

        _cm.plt.plot(horz,
                     vert,
                     color=treecolor,
                     alpha=_get_default('alpha', **kwargs),
                     linewidth=_get_default('linewidth', **kwargs))

    kwargs['title'] = kwargs.get('title', 'Soma view')
    kwargs['xlabel'] = kwargs.get('xlabel', plane[0])
    kwargs['ylabel'] = kwargs.get('ylabel', plane[1])

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #7
0
def density_cloud(obj,
                  new_fig=True,
                  subplot=111,
                  new_axes=True,
                  neurite_type='all',
                  bins=100,
                  plane='xy',
                  color_map=blues_map,
                  alpha=0.8,
                  centered=True,
                  colorbar=True,
                  **kwargs):
    """
    View the neuron morphologies of a population as a density cloud.
    """
    x1 = []
    y1 = []

    if neurite_type == 'all':
        ntypes = 'neurites'
    else:
        ntypes = neurite_type

    fig, ax = _cm.get_figure(new_fig=new_fig,
                             new_axes=new_axes,
                             subplot=subplot)

    for neu in obj.neurons:
        for tr in getattr(neu, ntypes):
            if centered:
                dx = neu.soma.get_center()[0]
                dy = neu.soma.get_center()[1]
            else:
                dx = 0
                dy = 0
            x1 = x1 + list(getattr(tr, plane[0]) - dx)
            y1 = y1 + list(getattr(tr, plane[1]) - dy)

    H1, xedges1, yedges1 = _np.histogram2d(x1, y1, bins=(bins, bins))
    mask = H1 < 0.05
    H2 = _np.ma.masked_array(H1, mask)
    color_map.set_bad(color='white', alpha=None)

    plots = ax.contourf((xedges1[:-1] + xedges1[1:]) / 2,
                        (yedges1[:-1] + yedges1[1:]) / 2,
                        _np.transpose(H2),
                        cmap=color_map,
                        alhpa=alpha)

    if colorbar:
        _cm.plt.colorbar(plots)
    # soma(neu.soma, new_fig=False)
    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #8
0
def diagram_enhanced(ph,
                     new_fig=True,
                     subplot=False,
                     alpha=1.0,
                     valID=2,
                     cmap=jet_map,
                     edgecolors='black',
                     s=30,
                     **kwargs):
    """
    Generates a 2d figure (diagram) of the persistent homology
    of a tree enhanced by a parameter encodes in ph[valID]
    """
    # Initialization of matplotlib figure and axes.
    fig, ax = cm.get_figure(new_fig=new_fig, subplot=subplot)
    val_max = np.max(ph, axis=0)[valID]

    # Hack for colorbar creation
    Z = [[0, 0], [0, 0]]
    levels = np.linspace(0.0, val_max, 200)
    CS3 = plt.contourf(Z, levels, cmap=cmap)

    def sort_ph_enhanced(ph, valID):
        """
        Sorts barcode according to length.
        """
        ph_sort = [p[:valID + 1] + [np.abs(p[0] - p[1])] for p in ph]
        ph_sort.sort(key=lambda x: x[valID + 1])
        return ph_sort

    ph_sort = sort_ph_enhanced(ph, valID)

    bounds_max = np.max(np.max(ph_sort))
    bounds_min = np.min(np.min(ph_sort))
    plt.plot([bounds_min, bounds_max], [bounds_min, bounds_max], c='black')

    colors = [cmap(p[valID] / val_max) for p in ph_sort]

    ax.scatter(np.array(ph_sort)[:, 0],
               np.array(ph_sort)[:, 1],
               c=colors,
               alpha=alpha,
               edgecolors=edgecolors,
               s=s)

    kwargs['title'] = kwargs.get('title', 'Persistence diagram')
    kwargs['xlabel'] = kwargs.get('xlabel', 'End radial distance from soma')
    kwargs['ylabel'] = kwargs.get('ylabel', 'Start radial distance from soma')

    plt.ylim([-1, len(ph_sort)])
    plt.colorbar(CS3)

    return cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #9
0
def persistence_image(ph,
                      new_fig=True,
                      subplot=111,
                      xlims=None,
                      ylims=None,
                      masked=False,
                      colorbar=False,
                      norm_factor=None,
                      threshold=0.01,
                      vmin=None,
                      vmax=None,
                      cmap=jet_map,
                      bw_method=None,
                      **kwargs):
    '''Plots the gaussian kernel
       of the ph diagram that is given.
    '''
    if xlims is None or xlims is None:
        xlims, ylims = analysis.get_limits(ph, coll=False)

    # pylint: disable=unexpected-keyword-arg
    Zn = analysis.get_persistence_image_data(ph,
                                             norm_factor=norm_factor,
                                             bw_method=bw_method,
                                             xlims=xlims,
                                             ylims=ylims)
    fig, ax = cm.get_figure(new_fig=new_fig, subplot=subplot)

    if masked:
        Zn = np.ma.masked_where((threshold > Zn), Zn)

    cax = ax.imshow(np.rot90(Zn),
                    vmin=vmin,
                    vmax=vmax,
                    cmap=cmap,
                    interpolation='bilinear',
                    extent=xlims + ylims)

    if colorbar:
        plt.colorbar(cax)

    kwargs['xlim'] = xlims
    kwargs['ylim'] = ylims
    kwargs['title'] = kwargs.get('title', 'Persistence image')
    kwargs['xlabel'] = kwargs.get('xlabel', 'End radial distance from soma')
    kwargs['ylabel'] = kwargs.get('ylabel', 'Start radial distance from soma')

    return Zn, cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #10
0
def histogram_stepped_population(ph_list,
                                 new_fig=True,
                                 subplot=False,
                                 color='b',
                                 alpha=0.7,
                                 **kwargs):
    '''Extracts and plots the stepped histogram of a list of persistence diagrams.
       The histogram is normalized acording to the number of persistence diagrams.
    '''
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)
    hist_data = analysis.histogram_stepped(analysis.collapse(ph_list))
    ax.fill_between(hist_data[0][:-1],
                    0,
                    hist_data[1] / len(ph_list),
                    color=color,
                    alpha=alpha)
    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #11
0
def histogram_stepped(ph,
                      new_fig=True,
                      subplot=False,
                      color='b',
                      alpha=0.7,
                      **kwargs):
    '''Extracts and plots the stepped histogram of a persistent
       homology array.
    '''
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)
    hist_data = analysis.histogram_stepped(ph)
    ax.fill_between(hist_data[0][:-1],
                    0,
                    hist_data[1],
                    color=color,
                    alpha=alpha)
    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #12
0
def histogram_horizontal(ph,
                         new_fig=True,
                         subplot=False,
                         bins=100,
                         color='b',
                         alpha=0.7,
                         **kwargs):
    '''Extracts and plots the binned histogram of a persistent
       homology array.
    '''
    fig, ax = cm.get_figure(new_fig=new_fig, subplot=subplot)
    hist_data = analysis.histogram_horizontal(ph, num_bins=bins)
    ax.fill_between(hist_data[0][:-1],
                    0,
                    hist_data[1],
                    color=color,
                    alpha=alpha)

    return cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #13
0
def start_length_diagram(ph,
                         new_fig=True,
                         subplot=False,
                         color='b',
                         alpha=1.0,
                         **kwargs):
    '''Plots the transformed ph diagram that represents lengths and starting points
       of a component.
    '''
    ph_transformed = transform_ph_to_length(ph)
    fig, ax = cm.get_figure(new_fig=new_fig, subplot=subplot)

    for p in ph_transformed:
        ax.scatter(p[0], p[1], c=color, edgecolors='black', alpha=alpha)

    kwargs['title'] = kwargs.get('title', 'Transformed Persistence diagram')
    kwargs['xlabel'] = kwargs.get('xlabel', 'Start of the component')
    kwargs['ylabel'] = kwargs.get('ylabel', 'Length of the component')
    return cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #14
0
def persistence_image_average(ph_list,
                              new_fig=True,
                              subplot=111,
                              xlims=None,
                              ylims=None,
                              norm_factor=1.0,
                              vmin=None,
                              vmax=None,
                              cmap=jet_map,
                              weighted=False,
                              **kwargs):
    """Merges a list of ph diagrams and plots their respective average image.
    """
    # pylint: disable=unexpected-keyword-arg
    av_imgs = analysis.get_average_persistence_image(ph_list,
                                                     xlims=xlims,
                                                     ylims=ylims,
                                                     norm_factor=norm_factor,
                                                     weighted=weighted)
    if xlims is None or xlims is None:
        xlims, ylims = analysis.get_limits(ph_list)

    if vmin is None:
        vmin = np.min(av_imgs)
    if vmax is None:
        vmax = np.max(av_imgs)

    fig, ax = cm.get_figure(new_fig=new_fig, subplot=subplot)
    ax.imshow(np.rot90(av_imgs),
              vmin=vmin,
              vmax=vmax,
              cmap=cmap,
              interpolation='bilinear',
              extent=xlims + ylims)

    kwargs['xlim'] = xlims
    kwargs['ylim'] = ylims
    kwargs['title'] = kwargs.get('title', 'Average persistence image')
    kwargs['xlabel'] = kwargs.get('xlabel', 'End radial distance from soma')
    kwargs['ylabel'] = kwargs.get('ylabel', 'Start radial distance from soma')

    return av_imgs, cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #15
0
def barcode_enhanced(ph,
                     new_fig=True,
                     subplot=False,
                     linewidth=1.2,
                     valID=2,
                     cmap=jet_map,
                     **kwargs):
    """
    Generates a 2d figure (barcode) of the persistent homology
    of a tree enhanced by a parameter encodes in ph[valID]
    """
    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)
    val_max = _np.max(ph, axis=0)[valID]

    # Hack for colorbar creation
    Z = [[0, 0], [0, 0]]
    levels = _np.linspace(0.0, val_max, 200)
    CS3 = _cm.plt.contourf(Z, levels, cmap=cmap)

    def sort_ph_enhanced(ph, valID):
        """
        Sorts barcode according to length.
        """
        ph_sort = [p[:valID + 1] + [_np.abs(p[0] - p[1])] for p in ph]
        ph_sort.sort(key=lambda x: x[valID + 1])
        return ph_sort

    ph_sort = sort_ph_enhanced(ph, valID)

    for ip, p in enumerate(ph_sort):
        ax.plot(p[:2], [ip, ip],
                c=cmap(p[valID] / val_max),
                linewidth=linewidth)

    kwargs['title'] = kwargs.get('title', 'Barcode of p.h.')
    kwargs['xlabel'] = kwargs.get('xlabel', 'Lifetime')
    _cm.plt.ylim([-1, len(ph_sort)])
    _cm.plt.colorbar(CS3)

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #16
0
def soma3d(sm, new_fig=True, new_axes=True, subplot=False, **kwargs):
    '''Generates a 3d figure of the soma.

    Parameters
    ----------
    soma: Soma
        neurom.Soma object
    '''
    treecolor = kwargs.get('treecolor', None)

    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig,
                             new_axes=new_axes,
                             subplot=subplot,
                             params={'projection': '3d'})

    # Definition of the tree color depending on the tree type.
    treecolor = _cm.get_color(treecolor, tree_type='soma')

    center = sm.get_center()

    xs = center[0]
    ys = center[1]
    zs = center[2]

    # Plot the soma as a circle.
    fig, ax = _cm.plot_sphere(fig,
                              ax,
                              center=[xs, ys, zs],
                              radius=sm.get_diameter(),
                              color=treecolor,
                              alpha=_get_default('alpha', **kwargs))

    kwargs['title'] = kwargs.get('title', 'Soma view')
    kwargs['xlabel'] = kwargs.get('xlabel', 'X')
    kwargs['ylabel'] = kwargs.get('ylabel', 'Y')
    kwargs['zlabel'] = kwargs.get('zlabel', 'Z')

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #17
0
def barcode(ph,
            new_fig=True,
            subplot=False,
            color='b',
            linewidth=1.2,
            **kwargs):
    """
    Generates a 2d figure (barcode) of the persistent homology
    of a tree as it has been computed by
    Topology.get_persistent_homology method.
    """
    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)
    ph_sort = analysis.sort_ph(ph)

    for ip, p in enumerate(ph_sort):
        ax.plot(p[:2], [ip, ip], c=color, linewidth=linewidth)

    kwargs['title'] = kwargs.get('title', 'Persistence barcode')
    kwargs['xlabel'] = kwargs.get('xlabel',
                                  'Lifetime: radial distance from soma')

    _cm.plt.ylim([-1, len(ph_sort)])
    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #18
0
def tree(tr,
         plane='xy',
         new_fig=True,
         subplot=False,
         hadd=0.0,
         vadd=0.0,
         **kwargs):
    '''Generates a 2d figure of the tree.

    Parameters
    ----------
    tr: Tree
        neurom.Tree object
    '''
    if plane not in ('xy', 'yx', 'xz', 'zx', 'yz', 'zy'):
        return None, 'No such plane found! Please select one of: xy, xz, yx, yz, zx, zy.'

    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)

    # Data needed for the viewer: x,y,z,r
    bounding_box = tr.get_bounding_box()

    def _seg_2d(seg, x_add=0.0, y_add=0.0):
        """2d coordinates required for the plotting of a segment"""

        horz = _utils.term_dict[plane[0]]
        vert = _utils.term_dict[plane[1]]

        horz1 = seg[0][horz] + x_add
        horz2 = seg[1][horz] + x_add
        vert1 = seg[0][vert] + y_add
        vert2 = seg[1][vert] + y_add

        return ((horz1, vert1), (horz2, vert2))

    segs = [_seg_2d(seg, hadd, vadd) for seg in tr.get_segments()]

    linewidth = _get_default('linewidth', **kwargs)

    # Definition of the linewidth according to diameter, if diameter is True.

    if _get_default('diameter', **kwargs):

        scale = _get_default('diameter_scale', **kwargs)
        linewidth = [d * scale for d in tr.d]

    if tr.get_type() not in _utils.tree_type:
        treecolor = 'black'
    else:
        treecolor = _cm.get_color(_get_default('treecolor', **kwargs),
                                  _utils.tree_type[tr.get_type()])

    # Plot the collection of lines.
    collection = _LC(segs,
                     color=treecolor,
                     linewidth=linewidth,
                     alpha=_get_default('alpha', **kwargs))

    ax.add_collection(collection)

    kwargs['title'] = kwargs.get('title', 'Tree view')
    kwargs['xlabel'] = kwargs.get('xlabel', plane[0])
    kwargs['ylabel'] = kwargs.get('ylabel', plane[1])

    white_space = _get_default('white_space', **kwargs)

    kwargs['xlim'] = kwargs.get('xlim', [
        bounding_box[0][_utils.term_dict[plane[0]]] - white_space,
        bounding_box[1][_utils.term_dict[plane[0]]] + white_space
    ])
    kwargs['ylim'] = kwargs.get('ylim', [
        bounding_box[0][_utils.term_dict[plane[1]]] - white_space,
        bounding_box[1][_utils.term_dict[plane[1]]] + white_space
    ])

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #19
0
def neuron(nrn,
           plane='xy',
           new_fig=True,
           subplot=False,
           hadd=0.0,
           vadd=0.0,
           neurite_type='all',
           rotation=None,
           nosoma=False,
           new_axes=True,
           **kwargs):
    '''Generates a 2d figure of the neuron,
    that contains a soma and a list of trees.

    Parameters
    ----------
    neuron: Neuron
        neurom.Neuron object

    Options
    -------
    plane: str
        Accepted values: Any pair of of xyz
        Default value is 'xy'

    linewidth: float
        Defines the linewidth of the tree and soma
        of the neuron, if diameter is set to False.
        Default value is 1.2.

    alpha: float
        Defines the transparency of the neuron.
        0.0 transparent through 1.0 opaque.
        Default value is 0.8.

    treecolor: str or None
        Defines the color of the trees.
        If None the default values will be used,
        depending on the type of tree:
        Soma: "black"
        Basal dendrite: "red"
        Axon : "blue"
        Apical dendrite: "purple"
        Undefined tree: "black"
        Default value is None.

    new_fig: boolean
        Defines if the neuron will be plotted
        in the current figure (False)
        or in a new figure (True)
        Default value is True.

    subplot: matplotlib subplot value or False
        If False the default subplot 111 will be used.
        For any other value a matplotlib subplot
        will be generated.
        Default value is False.

    diameter: boolean
        If True the diameter, scaled with diameter_scale factor,
        will define the width of the tree lines.
        If False use linewidth to select the width of the tree lines.
        Default value is True.

    diameter_scale: float
        Defines the scale factor that will be multiplied
        with the diameter to define the width of the tree line.
        Default value is 1.

    Returns
    --------
    A 3D matplotlib figure with a tree view, at the selected plane.
    '''
    if plane not in ('xy', 'yx', 'xz', 'zx', 'yz', 'zy'):
        return None, 'No such plane found! Please select one of: xy, xz, yx, yz, zx, zy.'

    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig,
                             subplot=subplot,
                             new_axes=new_axes)

    kwargs['new_fig'] = False
    kwargs['subplot'] = subplot

    if not nosoma:
        soma(nrn.soma, plane=plane, hadd=hadd, vadd=vadd, **kwargs)

    h = []
    v = []

    to_plot = []

    if rotation == 'apical':
        angle = _np.arctan2(nrn.apical[0].get_pca()[0],
                            nrn.apical[0].get_pca()[1])
        angle = _np.arctan2(rotation[1], rotation[0])

    if neurite_type == 'all':
        to_plot = nrn.neurites
    else:
        for neu_type in neurite_type:
            to_plot = to_plot + getattr(nrn, neu_type)

    for temp_tree in to_plot:
        if rotation is not None:
            temp_tree.rotate_xy(angle)

        bounding_box = temp_tree.get_bounding_box()

        h.append([
            bounding_box[0][_utils.term_dict[plane[0]]],
            bounding_box[1][_utils.term_dict[plane[0]]]
        ])
        v.append([
            bounding_box[0][_utils.term_dict[plane[1]]],
            bounding_box[1][_utils.term_dict[plane[1]]]
        ])

        tree(temp_tree, hadd=hadd, vadd=vadd, **kwargs)

    kwargs['title'] = kwargs.get('title', nrn.name)
    kwargs['xlabel'] = kwargs.get('xlabel', plane[0])
    kwargs['ylabel'] = kwargs.get('ylabel', plane[1])

    white_space = _get_default('white_space', **kwargs)
    kwargs['xlim'] = kwargs.get(
        'xlim',
        [_np.min(h) - white_space + hadd,
         _np.max(h) + white_space + hadd])
    kwargs['ylim'] = kwargs.get(
        'ylim',
        [_np.min(v) - white_space + vadd,
         _np.max(v) + white_space + vadd])

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #20
0
def neuron3d(nrn,
             new_fig=True,
             new_axes=True,
             subplot=False,
             neurite_type='all',
             **kwargs):
    '''Generates a figure of the neuron,
    that contains a soma and a list of trees.

    Parameters
    ----------
    neuron: Neuron
        neurom.Neuron object
    '''
    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig,
                             new_axes=new_axes,
                             subplot=subplot,
                             params={'projection': '3d'})

    kwargs['new_fig'] = False
    kwargs['new_axes'] = False
    kwargs['subplot'] = subplot

    soma3d(nrn.soma, **kwargs)

    h = []
    v = []
    d = []

    to_plot = []

    if neurite_type == 'all':
        to_plot = nrn.neurites
    else:
        for neu_type in neurite_type:
            to_plot = to_plot + getattr(nrn, neu_type)

    for temp_tree in to_plot:

        bounding_box = temp_tree.get_bounding_box()

        h.append([
            bounding_box[0][_utils.term_dict['x']],
            bounding_box[1][_utils.term_dict['x']]
        ])
        v.append([
            bounding_box[0][_utils.term_dict['y']],
            bounding_box[1][_utils.term_dict['y']]
        ])
        d.append([
            bounding_box[0][_utils.term_dict['z']],
            bounding_box[1][_utils.term_dict['z']]
        ])

        tree3d(temp_tree, **kwargs)

    kwargs['title'] = kwargs.get('title', nrn.name)
    white_space = _get_default('white_space', **kwargs)
    kwargs['xlim'] = kwargs.get(
        'xlim', [_np.min(h) - white_space,
                 _np.max(h) + white_space])
    kwargs['ylim'] = kwargs.get(
        'ylim', [_np.min(v) - white_space,
                 _np.max(v) + white_space])
    kwargs['zlim'] = kwargs.get(
        'zlim', [_np.min(d) - white_space,
                 _np.max(d) + white_space])

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #21
0
def population(pop,
               plane='xy',
               new_fig=True,
               subplot=False,
               hadd=0.0,
               vadd=0.0,
               neurite_type='all',
               **kwargs):
    '''Generates a 2d figure of the population,
    that contains a soma and a list of trees.

    Parameters
    ----------
    pop: Population
        neurom.Population object

    Options
    -------
    plane: str
        Accepted values: Any pair of of xyz
        Default value is 'xy'

    linewidth: float
        Defines the linewidth of the tree and soma
        of the neuron, if diameter is set to False.
        Default value is 1.2.

    alpha: float
        Defines the transparency of the neuron.
        0.0 transparent through 1.0 opaque.
        Default value is 0.8.

    treecolor: str or None
        Defines the color of the trees.
        If None the default values will be used,
        depending on the type of tree:
        Soma: "black"
        Basal dendrite: "red"
        Axon : "blue"
        Apical dendrite: "purple"
        Undefined tree: "black"
        Default value is None.

    new_fig: boolean
        Defines if the neuron will be plotted
        in the current figure (False)
        or in a new figure (True)
        Default value is True.

    subplot: matplotlib subplot value or False
        If False the default subplot 111 will be used.
        For any other value a matplotlib subplot
        will be generated.
        Default value is False.

    diameter: boolean
        If True the diameter, scaled with diameter_scale factor,
        will define the width of the tree lines.
        If False use linewidth to select the width of the tree lines.
        Default value is True.

    diameter_scale: float
        Defines the scale factor that will be multiplied
        with the diameter to define the width of the tree line.
        Default value is 1.

    Returns
    --------
    A 3D matplotlib figure with a tree view, at the selected plane.
    '''
    if plane not in ('xy', 'yx', 'xz', 'zx', 'yz', 'zy'):
        return None, 'No such plane found! Please select one of: xy, xz, yx, yz, zx, zy.'

    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig, subplot=subplot)

    kwargs['new_fig'] = False
    kwargs['subplot'] = subplot

    h = []
    v = []

    for nrn in pop.neurons:

        soma(nrn.soma, plane=plane, hadd=hadd, vadd=vadd, **kwargs)

        if neurite_type == 'all':
            neurite_list = ['basal', 'apical', 'axon']
        else:
            neurite_list = [neurite_type]

        for nt in neurite_list:
            for temp_tree in getattr(nrn, nt):

                bounding_box = temp_tree.get_bounding_box()

                h.append([
                    bounding_box[0][_utils.term_dict[plane[0]]] + hadd,
                    bounding_box[1][_utils.term_dict[plane[1]]] + vadd
                ])
                v.append([
                    bounding_box[0][_utils.term_dict[plane[0]]] + hadd,
                    bounding_box[1][_utils.term_dict[plane[1]]] + vadd
                ])

                tree(temp_tree, plane=plane, hadd=hadd, vadd=vadd, **kwargs)

    kwargs['title'] = kwargs.get('title', 'Neuron view')
    kwargs['xlabel'] = kwargs.get('xlabel', plane[0])
    kwargs['ylabel'] = kwargs.get('ylabel', plane[1])
    kwargs['xlim'] = kwargs.get('xlim', [_np.min(h), _np.max(h)])
    kwargs['ylim'] = kwargs.get('ylim', [_np.min(v), _np.max(v)])

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)
Beispiel #22
0
def trunk3d(tr, new_fig=True, new_axes=True, subplot=False, N=10, **kwargs):
    '''Generates a figure of the trunk in 3d.

    Parameters
    ----------
    tr: Tree
        neurom.Tree object
    '''
    # pylint: disable=import-outside-toplevel
    from mpl_toolkits.mplot3d.art3d import Line3DCollection

    # Initialization of matplotlib figure and axes.
    fig, ax = _cm.get_figure(new_fig=new_fig,
                             new_axes=new_axes,
                             subplot=subplot,
                             params={'projection': '3d'})

    def _seg_3d(seg):
        """3d coordinates needed for the plotting of a segment"""

        horz = _utils.term_dict['x']
        vert = _utils.term_dict['y']
        depth = _utils.term_dict['z']

        horz1 = seg[0][horz]
        horz2 = seg[1][horz]
        vert1 = seg[0][vert]
        vert2 = seg[1][vert]
        depth1 = seg[0][depth]
        depth2 = seg[1][depth]

        return ((horz1, vert1, depth1), (horz2, vert2, depth2))

    if len(tr.get_segments()) < N:
        N = len(tr.get_segments())

    segs = [_seg_3d(seg) for seg in tr.get_segments()[:N]]

    linewidth = _get_default('linewidth', **kwargs)

    # Definition of the linewidth according to diameter, if diameter is True.

    if _get_default('diameter', **kwargs):

        scale = _get_default('diameter_scale', **kwargs)
        linewidth = [d * scale for d in tr.d]

    treecolor = _cm.get_color(_get_default('treecolor', **kwargs),
                              _utils.tree_type[tr.get_type()])

    # Plot the collection of lines.
    collection = Line3DCollection(segs,
                                  color=treecolor,
                                  linewidth=linewidth,
                                  alpha=_get_default('alpha', **kwargs))

    ax.add_collection3d(collection)

    kwargs['title'] = kwargs.get('title', 'Tree 3d-view')
    kwargs['xlabel'] = kwargs.get('xlabel', 'X')
    kwargs['ylabel'] = kwargs.get('ylabel', 'Y')
    kwargs['zlabel'] = kwargs.get('zlabel', 'Z')

    return _cm.plot_style(fig=fig, ax=ax, **kwargs)