Beispiel #1
0
def estimate_structure():
    """
    CLI for estimating PVs from a single surface
    """

    parser = CommonParser(
        'ref',
        'struct2ref',
        'flirt',
        'struct',
        'super',
        'out',
        'surf',
        'coords',
        description="Estimate PVs for a structure defined by a single surface."
    )
    kwargs = vars(parser.parse_args())

    ext = '.nii.gz'
    if not kwargs.get('out'):
        namebase = op.splitext(utils._splitExts(kwargs['ref'])[0])[0]
        sname = op.splitext(utils._splitExts(kwargs['surf'])[0])[0]
        outdir = op.dirname(kwargs['ref'])
        kwargs['out'] = op.join(outdir, '%s_%s_pvs%s' % (namebase, sname, ext))
    else:
        if not kwargs['out'].endswith(ext):
            kwargs['out'] += ext

    # Estimate
    PVs = pvestimation.structure(**kwargs)

    # Output
    print('Saving output at', kwargs['out'])
    refSpace = ImageSpace(kwargs['ref'])
    refSpace.save_image(PVs, kwargs['out'])
Beispiel #2
0
def cortex(ref, struct2ref, **kwargs):
    """
    Estimate PVs for L/R cortex. All arguments are kwargs. To estimate for 
    a single hemisphere, provide only surfaces for that side. 

    Required args: 
        ref (str/regtricks ImageSpace): voxel grid in which to estimate PVs. 
        struct2ref (str/np.array/rt.Registration): registration between space 
            of surface and reference (see -flirt and -stuct). Use 'I' for identity. 
        fsdir (str): path to a FreeSurfer subject directory. 
        LWS/LPS/RWS/RPS (str): individual paths to the surfaces,
            eg LWS = Left White surface, RPS = Right Pial surace. 

    Optional args: 
        flirt (bool): denoting struct2ref is FLIRT transform; if so, set struct. 
        struct (str): path to structural image from which surfaces were derived. 
        cores (int): number of cores to use, default 8. 
        supersample (int/array): single or 3 values, supersampling factor. 
 
    Returns: 
        (np.array), 4D, size equal to the reference image, with the PVs arranged 
            GM/WM/non-brain in 4th dim. 
    """

    if not any([
            kwargs.get('fsdir') is not None,
            any([
                kwargs.get(s) is not None
                for s in ['LWS', 'LPS', 'RWS', 'RPS']
            ])
    ]):
        raise RuntimeError("Either a fsdir or paths to LWS/LPS etc"
                           "must be given.")

    hemispheres = utils.load_surfs_to_hemispheres(**kwargs)

    # Either create local copy of ImageSpace object or init from path
    if isinstance(ref, ImageSpace):
        ref_space = copy.deepcopy(ref)
    else:
        ref_space = ImageSpace(ref)

    # Set supersampler and estimate.
    if kwargs.get('supersample') is None:
        supersampler = np.maximum(np.floor(ref_space.vox_size.round(1) / 0.75),
                                  1).astype(np.int32)
    else:
        supersampler = kwargs.get('supersample') * np.ones(3)

    pvs = estimators._cortex(hemispheres, ref_space, struct2ref, supersampler,
                             kwargs['cores'], bool(kwargs.get('ones')))

    return pvs
Beispiel #3
0
def prepare_projector():
    """
    CLI for making a Projector
    """

    parser = CommonParser(
        'ref',
        'struct2ref',
        'flirt',
        'struct',
        'fsdir',
        'LPS',
        'LWS',
        'RPS',
        'RWS',
        'cores',
        'ones',
        'out',
        'super',
        description=(
            "Prepare a projector for a reference voxel grid and set "
            "of surfaces, and save in HDF5 format. This is a pre-processing "
            "step for performing surface-based analysis of volumetric data."))

    args = parser.parse_args()

    if args.flirt:
        struct2ref = rt.Registration.from_flirt(args.struc2ref, args.struct,
                                                args.ref).src2ref
    elif args.struct2ref == "I":
        struct2ref = rt.Registration.identity().src2ref
    else:
        struct2ref = rt.Registration(args.struct2ref).src2ref

    # Set up the hemispheres, reference ImageSpace, and prepare projector.
    spc = ImageSpace(args.ref)
    hemispheres = utils.load_surfs_to_hemispheres(**vars(args))
    hemispheres = [h.transform(struct2ref) for h in hemispheres]
    proj = projection.Projector(hemispheres, spc, args.super, args.cores,
                                args.ones)

    # Add default .h5 extension if needed, make outdir, save.
    outdir, outname = op.split(args.out)
    outbase, outext = op.splitext(outname)
    if not outext: outext = '.h5'
    if outdir: os.makedirs(outdir, exist_ok=True)
    out = op.join(outdir, outbase + outext)
    proj.save(out)
Beispiel #4
0
def estimate_cortex():
    """
    CLI for estimating PVs from cortex (either L,R, or both)
    """

    parser = CommonParser(
        'ref',
        'struct2ref',
        'fsdir',
        'LPS',
        'RPS',
        'RWS',
        'LWS',
        'flirt',
        'struct',
        'cores',
        'out',
        'ones',
        'super',
        description="Estimate PVs for L/R cortical hemispheres")
    kwargs = vars(parser.parse_args())

    # Estimation
    PVs = pvestimation.cortex(**kwargs)

    # Output
    ext = '.nii.gz'
    if not kwargs.get('out'):
        namebase = op.splitext(utils._splitExts(kwargs['ref'])[0])[0]
        outdir = op.join(op.dirname(kwargs['ref']), namebase + '_cortexpvs')
    else:
        outdir = kwargs['out']

    utils._weak_mkdir(outdir)
    refSpace = ImageSpace(kwargs['ref'])

    print('Saving output at', outdir)
    p = op.join(outdir, 'stacked' + ext)
    refSpace.save_image(PVs, p)
    for i, t in enumerate(['GM', 'WM', 'nonbrain']):
        p = op.join(outdir, t + ext)
        refSpace.save_image(PVs[:, :, :, i], p)
Beispiel #5
0
def structure(ref, struct2ref, **kwargs):
    """
    Estimate PVs for a structure defined by a single surface. 
    All arguments are kwargs.
    
    Required args: 
        ref (str/regtricks ImageSpace): voxel grid in which to estimate PVs. 
        struct2ref (str/np.array/rt.Registration): registration between space 
            of surface and reference (see -flirt and -stuct). Use 'I' for identity. 
        surf (str): path to surface (see coords argument below)

    Optional args: 
        flirt (bool): denoting struct2ref is FLIRT transform; if so, set struct. 
        coords (str): convention by which surface is defined: default is 'world' 
            (mm coords), for FIRST surfaces set as 'fsl' and provide struct argument 
        struct (str): path to structural image from which surfaces were derived
        cores (int): number of cores to use, default 8 
        supersample (int/array): single or 3 values, supersampling factor
 
    Returns: 
        (np.array) PV image, sized equal to reference space 
    """

    # Check we either have a surface object or path to one
    if not bool(kwargs.get('surf')):
        raise RuntimeError(
            "surf kwarg must be a Surface object or path to one")

    coords = kwargs.get('coords', 'world')
    if coords == 'fsl' and not kwargs.get('struct'):
        raise RuntimeError("Structural image must be supplied for FIRST surfs")

    if type(kwargs['surf']) is str:
        surf = Surface(kwargs['surf'], name=op.split(kwargs['surf'])[1])
        if kwargs.get('coords', 'world') == 'fsl':
            struct_spc = ImageSpace(kwargs['struct'])
            surf = surf.transform(struct_spc.FSL2world)

    elif type(kwargs['surf']) is not Surface:
        raise RuntimeError(
            "surf kwarg must be a Surface object or path to one")

    else:
        surf = kwargs['surf']

    # Either create local copy of ImageSpace object or init from path
    if isinstance(ref, ImageSpace):
        ref_space = copy.deepcopy(ref)
    else:
        ref_space = ImageSpace(ref)

    if kwargs.get('supersample') is None:
        supersampler = np.maximum(np.floor(ref_space.vox_size.round(1) / 0.75),
                                  1).astype(np.int32)
    else:
        supersampler = kwargs.get('supersample') * np.ones(3)

    pvs = estimators._structure(surf, ref_space, struct2ref, supersampler,
                                bool(kwargs.get('ones')), kwargs['cores'])

    return pvs
Beispiel #6
0
def complete(ref, struct2ref, **kwargs):
    """
    Estimate PVs for cortex and all structures identified by FIRST within 
    a reference image space. Use FAST to fill in non-surface PVs. 
    All arguments are kwargs.

    Required args: 
        ref (str/regtricks ImageSpace): voxel grid in which to estimate PVs. 
        struct2ref (str/np.array/rt.Registration): registration between space 
            of surface and reference (see -flirt and -stuct). Use 'I' for identity. 
        fslanat: path to fslanat directory. This REPLACES firstdir/fastdir/struct. 
        firstdir (str): FIRST directory in which .vtk surfaces are located
        fastdir (str): FAST directory in which _pve_0/1/2 are located 
        struct (str): path to structural image from which FIRST surfaces were dervied
        fsdir (str): FreeSurfer subject directory, OR: 
        LWS/LPS/RWS/RPS (str): paths to individual surfaces (L/R white/pial)

    Optional args: 
        flirt (bool): denoting struct2ref is FLIRT transform; if so, set struct. 
        coords (str): convention by which surface is defined: default is 'world' 
            (mm coords), for FIRST surfaces set as 'fsl' and provide struct argument 
        struct (str): path to structural image from which surfaces were derived
        cores (int): number of cores to use, default 8 
        supersample (int/array): single or 3 values, supersampling factor

    Returns: 
        (dict) PVs associated with each individual structure and 
            also the overall combined result ('stacked')
    """

    print("Estimating PVs for", ref.file_name)

    # If anat dir then various subdirs are loaded by @enforce_common_args
    # If not then direct load below
    if not bool(kwargs.get('fsdir')):
        if not all([bool(kwargs.get(k))
                    for k in ['LWS', 'LPS', 'RWS', 'RPS']]):
            raise RuntimeError("If fsdir not given, " +
                               "provide paths for LWS,LPS,RWS,RPS")

    if not bool(kwargs.get('fslanat')):
        if not (bool(kwargs.get('fastdir')) and bool(kwargs.get('firstdir'))):
            raise RuntimeError(
                "If not using anat dir, fastdir/firstdir required")

    # Resample FASTs to reference space. Then redefine CSF as 1-(GM+WM)
    fast_paths = utils._loadFASTdir(kwargs['fastdir'])
    fast_spc = fast_paths['FAST_GM']
    fast = np.stack([
        nibabel.load(fast_paths[f'FAST_{p}']).get_fdata()
        for p in ['GM', 'WM']
    ],
                    axis=-1)
    fasts_transformed = rt.Registration(struct2ref).apply_to_array(
        fast, fast_spc, ref)
    output = dict(FAST_GM=fasts_transformed[..., 0],
                  FAST_WM=fasts_transformed[..., 1])
    output['FAST_CSF'] = np.maximum(
        0, 1 - (output['FAST_WM'] + output['FAST_GM']))

    # Process subcortical structures first.
    FIRSTsurfs = utils._loadFIRSTdir(kwargs['firstdir'])
    subcortical = []
    struct_spc = ImageSpace(kwargs['struct'])
    for name, surf in FIRSTsurfs.items():
        s = Surface(surf, name)
        s = s.transform(struct_spc.FSL2world)
        subcortical.append(s)

    disp = "Structures found: " + ", ".join([s.name for s in subcortical] +
                                            ['Cortex'])
    print(disp)

    # To estimate against each subcortical structure, we apply the following
    # partial func to each using a map() call. Carry kwargs from this func
    desc = 'Subcortical structures'
    estimator = functools.partial(__structure_wrapper,
                                  ref=ref,
                                  struct2ref=struct2ref,
                                  **kwargs)

    # This is equivalent to a map(estimator, subcortical) call
    # All the extra stuff (tqdm etc) is used for progress bar
    results = [
        pv for _, pv in tqdm.tqdm(enumerate(map(estimator, subcortical)),
                                  total=len(subcortical),
                                  desc=desc,
                                  bar_format=core.BAR_FORMAT,
                                  ascii=True)
    ]

    output.update(dict(zip([s.name for s in subcortical], results)))

    # Now do the cortex, then stack the whole lot
    ctx = cortex(ref=ref, struct2ref=struct2ref, **kwargs)
    for i, t in enumerate(['_GM', '_WM', '_nonbrain']):
        output['cortex' + t] = (ctx[:, :, :, i])

    stacked = estimators.stack_images(
        {k: v
         for k, v in output.items() if k != 'BrStem'})
    output['GM'] = stacked[:, :, :, 0]
    output['WM'] = stacked[:, :, :, 1]
    output['nonbrain'] = stacked[:, :, :, 2]
    output['stacked'] = stacked

    return output
Beispiel #7
0
def estimate_complete():
    """
    CLI for estimating PVs for L/R cortex and subcortex
    """

    parser = CommonParser(
        'ref',
        'struct2ref',
        'fslanat',
        'fsdir',
        'firstdir',
        'fastdir',
        'LPS',
        'LWS',
        'RPS',
        'RWS',
        'ones',
        'super',
        'cores',
        'out',
        'flirt',
        'struct',
        description=(
            "Estimate PVs for cortex and all structures identified "
            "by FIRST within a reference image space. Use FAST to fill in "
            "non-surface PVs"))

    kwargs = vars(parser.parse_args())

    # Unless we have been given prepared fslanat dir, we will provide the path
    # to the next function to create one
    if type(kwargs.get('fslanat')) is str:
        if not op.isdir(kwargs.get('fslanat')):
            raise RuntimeError("fslanat dir %s does not exist" %
                               kwargs['fslanat'])
    else:
        if not all([(('fastdir' in kwargs) and ('firstdir' in kwargs)),
                    (('LPS' in kwargs) and ('RPS' in kwargs))]):
            raise RuntimeError(
                "Either separate -firstdir and -fastdir" +
                " must be provided, or an -fslanat dir must be provided")

    output = pvestimation.complete(**kwargs)

    # Output paths. If given -out then use that as output, otherwise
    # save alongside reference image
    ext = '.nii.gz'
    if not kwargs.get('out'):
        namebase = op.splitext(utils._splitExts(kwargs['ref'])[0])[0]
        outdir = op.join(op.dirname(kwargs['ref']), namebase + '_surfpvs')
    else:
        outdir = kwargs['out']

    # Make output dirs if they do not exist.
    intermediatedir = op.join(outdir, 'intermediate_pvs')
    utils._weak_mkdir(outdir)
    utils._weak_mkdir(intermediatedir)

    # Load the reference image space and save the various outputs.
    # 'stacked' goes in the outdir, all others go in outdir/intermediate
    refSpace = ImageSpace(kwargs['ref'])
    print('Saving output at', outdir)
    for k, o in output.items():
        if k in ['stacked', 'GM', 'WM', 'nonbrain']:
            path = op.join(outdir, k + ext)
        else:
            path = op.join(intermediatedir, k + ext)
        refSpace.save_image(o, path)
Beispiel #8
0
    def load(cls, path):
        """
        Load Projector from path in HDF5 format. This is useful for 
        performing repeated analyses with the same voxel grid and 
        cortical surfaces.
        """
        
        f = h5py.File(path, 'r')
        p = cls.__new__(cls)

        # Recreate the reference ImageSpace first 
        p.spc = ImageSpace.manual(f['ref_spc_vox2world'][()],
                                f['ref_spc_size'][()])
        if 'ref_spc_fname' in f: p.spc.fname = f['ref_spc_fname'][()]
        n_vox = p.spc.size.prod()

        # Now read out hemisphere specific properties 
        p._hemi_pvs = [] 
        p.vox_tri_mats = [] 
        p.vtx_tri_mats = []
        p.hemi_dict = {} 
        p._roi_pvs = {}

        for s in SIDES: 
            hemi_key = f"{s}_hemi"
            if hemi_key in f: 

                # Read out the surfaces, create the Hemisphere 
                ins, outs = [ Surface.manual(
                    f[hemi_key][f'{s}{n}S_points'][()], 
                    f[hemi_key][f'{s}{n}S_tris'][()], f'{s}{n}S')
                    for n in ['W', 'P'] ]
                p.hemi_dict[s] = Hemisphere(ins, outs, s)

                # Read out the PVs array for the hemi 
                p._hemi_pvs.append(f[hemi_key][f"{s}_pvs"][()])

                # Recreate the sparse voxtri and vtxtri matrices. 
                # They are stored as a 3 x N array, where top row 
                # is row indices, second is column, then data 
                voxtri = f[hemi_key][f"{s}_vox_tri"][()]
                assert voxtri.shape[0] == 3, 'expected 3 rows'
                voxtri = sparse.coo_matrix(
                    (voxtri[2,:], (voxtri[0,:], voxtri[1,:])),
                    shape=(n_vox, ins.tris.shape[0]))
                p.vox_tri_mats.append(voxtri.tocsr())

                # Same convention as above
                vtxtri = f[hemi_key][f"{s}_vtx_tri"][()]
                assert vtxtri.shape[0] == 3, 'expected 3 rows'
                vtxtri = sparse.coo_matrix(
                    (vtxtri[2,:], (vtxtri[0,:], vtxtri[1,:])),
                    shape=(ins.n_points, ins.tris.shape[0]))
                p.vtx_tri_mats.append(vtxtri.tocsr())

        if "subcortical_pvs" in f: 
            g = f["subcortical_pvs"]
            for k in sorted(g.keys()): 
                p._roi_pvs[k] = g[k][()]

        return p