def mask_tokens(inputs: torch.Tensor, tokenizer: Tokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]:
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """

    if tokenizer.mask_token is None:
        raise ValueError(
            "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer."
        )

    labels = inputs.clone()
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
    special_tokens_mask = [
        tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
    ]
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
    if tokenizer._pad_token is not None:
        padding_mask = labels.eq(tokenizer.pad_token_id)
        probability_matrix.masked_fill_(padding_mask, value=0.0)
    masked_indices = torch.bernoulli(probability_matrix).bool()
    labels[~masked_indices] = -100  # We only compute loss on masked tokens

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]

    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
    return inputs, labels
Beispiel #2
0
torch.set_grad_enabled(False)

# Store the model we want to use
MODEL_NAME = "bert-base-cased"

# We need to create the model and tokenizer
model = AutoModel.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# Tokens comes from a process that splits the input into sub-entities with interesting linguistic properties.
tokens = tokenizer.tokenize("This is an input example")
print("Tokens: {}".format(tokens))

# This is not sufficient for the model, as it requires integers as input,
# not a problem, let's convert tokens to ids.
tokens_ids = tokenizer.convert_tokens_to_ids(tokens)
print("Tokens id: {}".format(tokens_ids))

# Add the required special tokens
tokens_ids = tokenizer.build_inputs_with_special_tokens(tokens_ids)

# We need to convert to a Deep Learning framework specific format, let's use PyTorch for now.
tokens_pt = torch.tensor([tokens_ids])
print("Tokens PyTorch: {}".format(tokens_pt))

# Now we're ready to go through BERT with out input
outputs, pooled = model(tokens_pt)
print("Token wise output: {}, Pooled output: {}".format(
    outputs.shape, pooled.shape))

# Same thing factored into one-line as follow