Beispiel #1
0
def transform_scalars(dataset, resampling_factor=[1, 1, 1]):
    """Resample dataset"""

    from tomviz import utils
    import scipy.ndimage
    import numpy as np

    array = utils.get_array(dataset)

    # Transform the dataset.
    result_shape = utils.zoom_shape(array, resampling_factor)
    result = np.empty(result_shape, array.dtype, order='F')
    scipy.ndimage.interpolation.zoom(array, resampling_factor, output=result)

    # Set the result as the new scalars.
    utils.set_array(dataset, result)

    # Update tilt angles if dataset is a tilt series.
    if resampling_factor[2] != 1:
        try:
            tilt_angles = utils.get_tilt_angles(dataset)

            result_shape = utils.zoom_shape(tilt_angles, resampling_factor[2])
            result = np.empty(result_shape, array.dtype, order='F')
            scipy.ndimage.interpolation.zoom(
                tilt_angles, resampling_factor[2], output=result)
            utils.set_tilt_angles(dataset, result)
        except: # noqa
            # TODO What exception are we ignoring?
            pass
Beispiel #2
0
def transform(dataset, resampling_factor=[1, 1, 1]):
    """Resample dataset"""

    from tomviz import utils
    import scipy.ndimage
    import numpy as np

    array = dataset.active_scalars

    # Transform the dataset.
    result_shape = utils.zoom_shape(array, resampling_factor)
    result = np.empty(result_shape, array.dtype, order='F')
    scipy.ndimage.interpolation.zoom(array, resampling_factor, output=result)

    # Set the result as the new scalars.
    dataset.active_scalars = result

    # Update tilt angles if dataset is a tilt series.
    if resampling_factor[2] != 1:
        try:
            tilt_angles = dataset.tilt_angles

            result_shape = utils.zoom_shape(tilt_angles, resampling_factor[2])
            result = np.empty(result_shape, array.dtype, order='F')
            scipy.ndimage.interpolation.zoom(tilt_angles,
                                             resampling_factor[2],
                                             output=result)
            dataset.tilt_angles = result
        except:  # noqa
            # TODO What exception are we ignoring?
            pass
Beispiel #3
0
def transform_scalars(dataset):
    """Downsample volume by a factor of 2"""

    from tomviz import utils
    import scipy.ndimage
    import numpy as np

    array = utils.get_array(dataset)

    # Downsample the dataset x2 using order 1 spline (linear)
    # Calculate out array shape
    zoom = (0.5, 0.5, 0.5)
    result_shape = utils.zoom_shape(array, zoom)
    result = np.empty(result_shape, array.dtype, order='F')
    scipy.ndimage.interpolation.zoom(array, zoom,
                                     output=result, order=1,
                                     mode='constant', cval=0.0,
                                     prefilter=False)

    # Set the result as the new scalars.
    utils.set_array(dataset, result)

    # Update tilt angles if dataset is a tilt series.
    try:
        tilt_angles = utils.get_tilt_angles(dataset)
        result_shape = utils.zoom_shape(tilt_angles, 0.5)
        result = np.empty(result_shape, array.dtype, order='F')
        tilt_angles = scipy.ndimage.interpolation.zoom(tilt_angles, 0.5,
                                                       output=result)
        utils.set_tilt_angles(dataset, result)
    except: # noqa
        # TODO What exception are we ignoring?
        pass
Beispiel #4
0
def transform_scalars(dataset):
    """Downsample tilt images by a factor of 2"""

    from tomviz import utils
    import scipy.ndimage
    import numpy as np
    import warnings

    array = utils.get_array(dataset)

    zoom = (0.5, 0.5, 1)
    result_shape = utils.zoom_shape(array, zoom)
    result = np.empty(result_shape, array.dtype, order='F')
    # Downsample the dataset x2 using order 1 spline (linear)
    warnings.filterwarnings('ignore', '.*output shape of zoom.*')
    scipy.ndimage.interpolation.zoom(array,
                                     zoom,
                                     output=result,
                                     order=1,
                                     mode='constant',
                                     cval=0.0,
                                     prefilter=False)

    # Set the result as the new scalars.
    utils.set_array(dataset, result)
Beispiel #5
0
def transform_scalars(dataset):
    """Downsample volume by a factor of 2"""

    from tomviz import utils
    import scipy.ndimage
    import numpy as np

    array = utils.get_array(dataset)
    
    # Downsample the dataset x2 using order 1 spline (linear)
    # Calculate out array shape

    def dimensions(array):
        if array.ndim == 4:
            zoom = (0.5,0.5,0.5,1)
        
        else:
            zoom = (0.5, 0.5, 0.5)
        
        return zoom

    zoom = dimensions(array)
    result_shape = utils.zoom_shape(array, zoom)
    result = np.empty(result_shape, array.dtype, order='F')
    scipy.ndimage.interpolation.zoom(array, zoom,
                                     output=result, order=1,
                                     mode='constant', cval=0.0,
                                     prefilter=False)
    
    # Set the result as the new scalars.
    utils.set_array(dataset, result)

    # Update tilt angles if dataset is a tilt series.
    try:
        tilt_angles = utils.get_tilt_angles(dataset)
        result_shape = utils.zoom_shape(tilt_angles, 0.5)
        result = np.empty(result_shape, array.dtype, order='F')
        tilt_angles = scipy.ndimage.interpolation.zoom(tilt_angles, 0.5,
                                                       output=result)
        utils.set_tilt_angles(dataset, result)
    except: # noqa
        # TODO What exception are we ignoring?
        pass
Beispiel #6
0
def transform(dataset):
    """Downsample volume by a factor of 2"""

    from tomviz import utils
    import scipy.ndimage
    import numpy as np

    array = dataset.active_scalars

    # Downsample the dataset x2 using order 1 spline (linear)
    # Calculate out array shape
    zoom = (0.5, 0.5, 0.5)
    result_shape = utils.zoom_shape(array, zoom)
    result = np.empty(result_shape, array.dtype, order='F')
    scipy.ndimage.interpolation.zoom(array,
                                     zoom,
                                     output=result,
                                     order=1,
                                     mode='constant',
                                     cval=0.0,
                                     prefilter=False)

    # Set the result as the new scalars.
    dataset.active_scalars = result

    # Update tilt angles if dataset is a tilt series.
    try:
        tilt_angles = dataset.tilt_angles
        result_shape = utils.zoom_shape(tilt_angles, 0.5)
        result = np.empty(result_shape, array.dtype, order='F')
        tilt_angles = scipy.ndimage.interpolation.zoom(tilt_angles,
                                                       0.5,
                                                       output=result)
        dataset.tilt_angles = result
    except:  # noqa
        # TODO What exception are we ignoring?
        pass
Beispiel #7
0
def transform_scalars(dataset):
    """Downsample tilt images by a factor of 2"""

    from tomviz import utils
    import scipy.ndimage
    import numpy as np

    array = utils.get_array(dataset)

    zoom = (0.5, 0.5, 1)
    result_shape = utils.zoom_shape(array, zoom)
    result = np.empty(result_shape, array.dtype, order='F')
    # Downsample the dataset x2 using order 1 spline (linear)
    scipy.ndimage.interpolation.zoom(array, zoom,
                                     output=result,
                                     order=1,
                                     mode='constant',
                                     cval=0.0, prefilter=False)

    # Set the result as the new scalars.
    utils.set_array(dataset, result)