Beispiel #1
0
 def __init__(self, vmin, vmax, num_atoms, dense_kwargs=None):
     super().__init__()
     if dense_kwargs is None:
         dense_kwargs = models.default_dense_kwargs()
     self.distributional_layer = tf.keras.layers.Dense(
         num_atoms, **dense_kwargs)
     self.values = tf.cast(tf.linspace(vmin, vmax, num_atoms), tf.float32)
Beispiel #2
0
 def __init__(self,
              loc_activation='tanh',
              dense_loc_kwargs=None,
              scale_activation='softplus',
              scale_min=1e-4,
              scale_max=1,
              dense_scale_kwargs=None,
              distribution=tfp.distributions.MultivariateNormalDiag):
     super().__init__()
     self.loc_activation = loc_activation
     if dense_loc_kwargs is None:
         dense_loc_kwargs = models.default_dense_kwargs()
     self.dense_loc_kwargs = dense_loc_kwargs
     self.scale_activation = scale_activation
     self.scale_min = scale_min
     self.scale_max = scale_max
     if dense_scale_kwargs is None:
         dense_scale_kwargs = models.default_dense_kwargs()
     self.dense_scale_kwargs = dense_scale_kwargs
     self.distribution = distribution
Beispiel #3
0
 def __init__(self, activation='tanh', dense_kwargs=None):
     super().__init__()
     self.activation = activation
     if dense_kwargs is None:
         dense_kwargs = models.default_dense_kwargs()
     self.dense_kwargs = dense_kwargs
Beispiel #4
0
 def __init__(self, dense_kwargs=None):
     super().__init__()
     if dense_kwargs is None:
         dense_kwargs = models.default_dense_kwargs()
     self.v_layer = tf.keras.layers.Dense(1, **dense_kwargs)