Beispiel #1
0
def partial(cfgfile, weightfile, outfile, cutoff):
    m = Darknet(cfgfile)
    m.print_network()
    m.load_weights(weightfile)
    m.seen = 0
    m.save_weights(outfile, cutoff)
    print('save %s' % (outfile))
Beispiel #2
0
def detect_skimage(cfgfile, weightfile, imgfile):
    from skimage import io
    from skimage.transform import resize
    m = Darknet(cfgfile)

    m.print_network()
    m.load_weights(weightfile)
    print('Loading weights from %s... Done!' % (weightfile))

    if m.num_classes == 20:
        namesfile = 'data/voc.names'
    elif m.num_classes == 80:
        namesfile = 'data/coco.names'
    else:
        namesfile = 'data/names'

    use_cuda = 1
    if use_cuda:
        m.cuda()

    img = io.imread(imgfile)
    sized = resize(img, (m.width, m.height)) * 255

    for i in range(2):
        start = time.time()
        boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
        finish = time.time()
        if i == 1:
            print('%s: Predicted in %f seconds.' % (imgfile, (finish - start)))

    class_names = load_class_names(namesfile)
    plot_boxes_cv2(img,
                   boxes,
                   savename='predictions.jpg',
                   class_names=class_names)
Beispiel #3
0
def detect(cfgfile, weightfile, imgfile):
    m = Darknet(cfgfile)

    m.print_network()
    m.load_weights(weightfile)
    print('Loading weights from %s... Done!' % (weightfile))

    if m.num_classes == 20:
        namesfile = 'data/voc.names'
    elif m.num_classes == 80:
        namesfile = 'data/coco.names'
    else:
        namesfile = 'data/names'

    use_cuda = 1
    if use_cuda:
        m.cuda()

    img = Image.open(imgfile).convert('RGB')
    sized = img.resize((m.width, m.height))

    for i in range(2):
        start = time.time()
        boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
        finish = time.time()
        if i == 1:
            print('%s: Predicted in %f seconds.' % (imgfile, (finish - start)))

    class_names = load_class_names(namesfile)
    plot_boxes(img, boxes, 'predictions.jpg', class_names)
Beispiel #4
0
def demo(cfgfile, weightfile):
    m = Darknet(cfgfile)
    m.print_network()
    m.load_weights(weightfile)
    print('Loading weights from %s... Done!' % (weightfile))

    if m.num_classes == 20:
        namesfile = 'data/voc.names'
    elif m.num_classes == 80:
        namesfile = 'data/coco.names'
    else:
        namesfile = 'data/names'
    class_names = load_class_names(namesfile)

    use_cuda = 1
    if use_cuda:
        m.cuda()

    cap = cv2.VideoCapture(0)
    if not cap.isOpened():
        print("Unable to open camera")
        exit(-1)

    while True:
        res, img = cap.read()
        if res:
            sized = cv2.resize(img, (m.width, m.height))
            bboxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
            print('------')
            draw_img = plot_boxes_cv2(img, bboxes, None, class_names)
            cv2.imshow(cfgfile, draw_img)
            cv2.waitKey(1)
        else:
            print("Unable to read image")
            exit(-1)
Beispiel #5
0
labpath = imgpath.replace('images', 'labels').replace('JPEGImages', 'labels').replace('.jpg', '.txt').replace('.png','.txt')
label = torch.zeros(50*5)
if os.path.getsize(labpath):
    tmp = torch.from_numpy(np.loadtxt(labpath))
    #tmp = torch.from_numpy(read_truths_args(labpath, 8.0/img.width))
    #tmp = torch.from_numpy(read_truths(labpath))
    tmp = tmp.view(-1)
    tsz = tmp.numel()
    #print('labpath = %s , tsz = %d' % (labpath, tsz))
    if tsz > 50*5:
        label = tmp[0:50*5]
    elif tsz > 0:
        label[0:tsz] = tmp
label = label.view(1, 50*5)

m = Darknet(cfgfile)
region_loss = m.loss
m.load_weights(weightfile)

print('--- bn weight ---')
print(m.models[0][1].weight)
print('--- bn bias ---')
print(m.models[0][1].bias)
print('--- bn running_mean ---')
print(m.models[0][1].running_mean)
print('--- bn running_var ---')
print(m.models[0][1].running_var)

m.train()
m = m.cuda()
Beispiel #6
0
def eval_list(cfgfile, weightfile, imglist):
    #m = TinyYoloFace14Net()
    #m.eval()
    #m.load_darknet_weights(tiny_yolo_weight)

    m = Darknet(cfgfile)
    m.eval()
    m.load_weights(weightfile)
    eval_wid = m.width
    eval_hei = m.height

    use_cuda = 1
    if use_cuda:
        m.cuda()

    conf_thresh = 0.25
    nms_thresh = 0.4
    iou_thresh = 0.5
    min_box_scale = 8. / m.width

    with open(imglist) as fp:
        lines = fp.readlines()

    total = 0.0
    proposals = 0.0
    correct = 0.0
    lineId = 0
    avg_iou = 0.0
    for line in lines:
        img_path = line.rstrip()
        if img_path[0] == '#':
            continue
        lineId = lineId + 1
        lab_path = img_path.replace('images', 'labels')
        lab_path = lab_path.replace('JPEGImages', 'labels')
        lab_path = lab_path.replace('.jpg', '.txt').replace('.png', '.txt')
        #truths = read_truths(lab_path)
        truths = read_truths_args(lab_path, min_box_scale)
        #print(truths)

        img = Image.open(img_path).convert('RGB').resize((eval_wid, eval_hei))
        boxes = do_detect(m, img, conf_thresh, nms_thresh, use_cuda)
        if False:
            savename = "tmp/%06d.jpg" % (lineId)
            print("save %s" % savename)
            plot_boxes(img, boxes, savename)

        total = total + truths.shape[0]

        for i in range(len(boxes)):
            if boxes[i][4] > conf_thresh:
                proposals = proposals + 1

        for i in range(truths.shape[0]):
            box_gt = [
                truths[i][1], truths[i][2], truths[i][3], truths[i][4], 1.0
            ]
            best_iou = 0
            for j in range(len(boxes)):
                iou = bbox_iou(box_gt, boxes[j], x1y1x2y2=False)
                best_iou = max(iou, best_iou)
            if best_iou > iou_thresh:
                avg_iou += best_iou
                correct = correct + 1

    precision = 1.0 * correct / proposals
    recall = 1.0 * correct / total
    fscore = 2.0 * precision * recall / (precision + recall)
    print("%d IOU: %f, Recal: %f, Precision: %f, Fscore: %f\n" %
          (lineId - 1, avg_iou / correct, recall, precision, fscore))
Beispiel #7
0
# Configure options
cfg.config_data(data_options)
cfg.config_net(net_options)

backupdir = cfg.backup
print('logging to ' + backupdir)
if not os.path.exists(backupdir):
    os.mkdir(backupdir)

###############
torch.manual_seed(seed)
if use_cuda:
    os.environ['CUDA_VISIBLE_DEVICES'] = gpus
    torch.cuda.manual_seed(seed)

model = Darknet(cfgfile)
region_loss = model.loss

model.load_weights(weightfile)
model.print_network()

# Prepare dataset
if cfg.yolo_joint:
    trainlist = dataset.loadlines(trainlist)
    n_bef = len(set(trainlist))
    metalist = dataset.loadlines(data_options['meta'], checkvalid=False)
    trainlist = sorted(list(set(trainlist + metalist)))
    n_aft = len(trainlist)
    print("number of samples: {} to {}".format(n_bef, n_aft))
    trainlist *= cfg.repeat
else:
Beispiel #8
0
def valid(datacfg, cfgfile, weightfile, outfile):
    options = read_data_cfg(datacfg)
    valid_images = options['valid']
    # backup = cfg.backup
    backup = weightfile.split('/')[-2]
    ckpt = weightfile.split('/')[-1].split('.')[0]
    prefix = 'results/' + backup.split('/')[-1] + '/e' + ckpt
    print('saving to: ' + prefix)
    names = cfg.classes

    with open(valid_images) as fp:
        tmp_files = fp.readlines()
        valid_files = [item.rstrip() for item in tmp_files]
    
    m = Darknet(cfgfile)
    m.print_network()
    m.load_weights(weightfile)
    m.cuda()
    m.eval()

    valid_dataset = dataset.listDataset(valid_images, shape=(m.width, m.height),
                                        shuffle=False,
                                        transform=transforms.Compose([
                           transforms.ToTensor(),
                       ]))
    valid_batchsize = 2
    assert(valid_batchsize > 1)

    kwargs = {'num_workers': 4, 'pin_memory': True}
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=valid_batchsize, shuffle=False, **kwargs) 

    fps = [0]*m.num_classes
    if not os.path.exists(prefix):
        # os.mkdir(prefix)
        os.makedirs(prefix)
    for i in range(m.num_classes):
        buf = '%s/%s%s.txt' % (prefix, outfile, names[i])
        fps[i] = open(buf, 'w')
   
    lineId = -1
    
    conf_thresh = 0.005
    nms_thresh = 0.45
    for batch_idx, (data, target) in enumerate(valid_loader):
        data = data.cuda()
        data = Variable(data, volatile = True)
        output = m(data).data
        batch_boxes = get_region_boxes(output, conf_thresh, m.num_classes, m.anchors, m.num_anchors, 0, 1)
        for i in range(output.size(0)):
            lineId = lineId + 1
            fileId = os.path.basename(valid_files[lineId]).split('.')[0]
            width, height = get_image_size(valid_files[lineId])
            print(valid_files[lineId])
            boxes = batch_boxes[i]
            boxes = nms(boxes, nms_thresh)
            for box in boxes:
                x1 = (box[0] - box[2]/2.0) * width
                y1 = (box[1] - box[3]/2.0) * height
                x2 = (box[0] + box[2]/2.0) * width
                y2 = (box[1] + box[3]/2.0) * height

                det_conf = box[4]
                # import pdb
                # pdb.set_trace()
                for j in range((len(box)-5)/2):
                    cls_conf = box[5+2*j]
                    cls_id = box[6+2*j]
                    prob =det_conf * cls_conf
                    fps[cls_id].write('%s %f %f %f %f %f\n' % (fileId, prob, x1, y1, x2, y2))
                    # fps[cls_id].write('%s %f %f %f %f %f %f\n' % (fileId, det_conf, cls_conf, x1, y1, x2, y2))

    for i in range(m.num_classes):
        fps[i].close()
Beispiel #9
0
use_cuda = True
seed = 22222
eps = 1e-5

# Test parameters
conf_thresh = 0.25
nms_thresh = 0.4
iou_thresh = 0.5

###############
torch.manual_seed(seed)
if use_cuda:
    os.environ['CUDA_VISIBLE_DEVICES'] = gpus
    torch.cuda.manual_seed(seed)

model = Darknet(cfgfile)
model.print_network()

init_width = model.width
init_height = model.height

kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {}
test_loader = torch.utils.data.DataLoader(dataset.listDataset(
    testlist,
    shape=(init_width, init_height),
    shuffle=False,
    transform=transforms.Compose([
        transforms.ToTensor(),
    ]),
    train=False),
                                          batch_size=batch_size,