Beispiel #1
0
 def test_yuv_reader(self):
     yuv_reader = YuvReader(
         filepath=config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv422p10le.yuv",
         width=576,
         height=324,
         yuv_type='yuv422p10le'
     )
     self.assertEquals(yuv_reader.num_bytes, 35831808)
     self.assertEquals(yuv_reader.num_frms, 48)
     self.assertEquals(yuv_reader._get_uv_width_height_multiplier(), (0.5, 1.0))
Beispiel #2
0
 def test_yuv_reader(self):
     yuv_reader = YuvReader(filepath=config.ROOT +
                            "/resource/yuv/src01_hrc00_576x324.yuv",
                            width=576,
                            height=324,
                            yuv_type='yuv420p')
     self.assertEquals(yuv_reader.num_bytes, 13436928)
     self.assertEquals(yuv_reader.num_frms, 48)
     self.assertEquals(yuv_reader._get_uv_width_height_multiplier(),
                       (0.5, 0.5))
Beispiel #3
0
    def _generate_result(self, asset):
        # routine to call the command-line executable and generate feature
        # scores in the log file.

        quality_w, quality_h = asset.quality_width_height

        ref_scores_mtx = None
        with YuvReader(filepath=asset.ref_workfile_path,
                       width=quality_w,
                       height=quality_h,
                       yuv_type=self._get_workfile_yuv_type(
                           asset.yuv_type)) as ref_yuv_reader:
            scores_mtx_list = []
            i = 0
            for ref_yuv in ref_yuv_reader:
                ref_y = ref_yuv[0]
                firstm = ref_y.mean()
                secondm = ref_y.var() + firstm**2
                scores_mtx_list.append(np.hstack(([firstm], [secondm])))
                i += 1
            ref_scores_mtx = np.vstack(scores_mtx_list)

        dis_scores_mtx = None
        with YuvReader(filepath=asset.dis_workfile_path,
                       width=quality_w,
                       height=quality_h,
                       yuv_type=self._get_workfile_yuv_type(
                           asset.yuv_type)) as dis_yuv_reader:
            scores_mtx_list = []
            i = 0
            for dis_yuv in dis_yuv_reader:
                dis_y = dis_yuv[0]
                firstm = dis_y.mean()
                secondm = dis_y.var() + firstm**2
                scores_mtx_list.append(np.hstack(([firstm], [secondm])))
                i += 1
            dis_scores_mtx = np.vstack(scores_mtx_list)

        assert ref_scores_mtx is not None and dis_scores_mtx is not None

        log_dict = {
            'ref_scores_mtx': ref_scores_mtx.tolist(),
            'dis_scores_mtx': dis_scores_mtx.tolist()
        }

        log_file_path = self._get_log_file_path(asset)
        with open(log_file_path, 'wt') as log_file:
            log_file.write(str(log_dict))
Beispiel #4
0
 def test_with(self):
     with YuvReader(filepath=config.ROOT +
                    "/resource/yuv/src01_hrc00_576x324.yuv",
                    width=576,
                    height=324,
                    yuv_type='yuv420p') as yuv_reader:
         self.assertEquals(yuv_reader.file.__class__, file)
Beispiel #5
0
    def _generate_result(self, asset):
        quality_w, quality_h = asset.quality_width_height

        # count number of frames
        dis_ys = []
        dis_us = []
        dis_vs = []
        with YuvReader(filepath=asset.dis_workfile_path,
                       width=quality_w,
                       height=quality_h,
                       yuv_type=self._get_workfile_yuv_type(
                           asset.yuv_type)) as dis_yuv_reader:
            for dis_yuv in dis_yuv_reader:
                dis_y, dis_u, dis_v = dis_yuv
                dis_ys.append(dis_y)
                dis_us.append(dis_u)
                dis_vs.append(dis_v)

        # Y
        if 'y' in self.channels.lower():
            h5py_cache_y = self.h5py_file.create_dataset(
                str(asset) + '_y',
                (len(dis_ys), dis_ys[0].shape[0], dis_ys[0].shape[1]),
                dtype='float')
            h5py_cache_y.dims[0].label = 'frame'
            h5py_cache_y.dims[1].label = 'height'
            h5py_cache_y.dims[2].label = 'width'
            for idx, dis_y in enumerate(dis_ys):
                h5py_cache_y[idx] = dis_y

        # U
        if 'u' in self.channels.lower():
            h5py_cache_u = self.h5py_file.create_dataset(
                str(asset) + '_u',
                (len(dis_us), dis_us[0].shape[0], dis_us[0].shape[1]),
                dtype='float')
            h5py_cache_u.dims[0].label = 'frame'
            h5py_cache_u.dims[1].label = 'height'
            h5py_cache_u.dims[2].label = 'width'
            for idx, dis_u in enumerate(dis_us):
                h5py_cache_u[idx] = dis_u

        # V
        if 'v' in self.channels.lower():
            h5py_cache_v = self.h5py_file.create_dataset(
                str(asset) + '_v',
                (len(dis_vs), dis_vs[0].shape[0], dis_vs[0].shape[1]),
                dtype='float')
            h5py_cache_v.dims[0].label = 'frame'
            h5py_cache_v.dims[1].label = 'height'
            h5py_cache_v.dims[2].label = 'width'
            for idx, dis_v in enumerate(dis_vs):
                h5py_cache_v[idx] = dis_v
Beispiel #6
0
    def test_iteration(self):

        y_1stmoments = []
        y_2ndmoments = []

        with YuvReader(
                filepath=config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv",
                width=576, height=324, yuv_type='yuv420p') as yuv_reader:

            for y, u, v in yuv_reader:
                y_1stmoments.append(y.mean())
                y_2ndmoments.append(y.var() + y.mean() * y.mean())

        self.assertEquals(len(y_1stmoments), 48)
        self.assertEquals(len(y_2ndmoments), 48)
        self.assertAlmostEquals(np.mean(y_1stmoments), 61.332006624999984, places=4)
        self.assertAlmostEquals(np.mean(y_2ndmoments), 4798.659574041666, places=4)
Beispiel #7
0
    def test_next_y_u_v(self):
        with YuvReader(
            filepath=config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv",
            width=576,
            height=324,
            yuv_type='yuv420p'
        ) as yuv_reader:

            y, u, v = yuv_reader.next_y_u_v()

            self.assertEquals(y[0][0], 87)
            self.assertEquals(y[0][1], 131)
            self.assertEquals(y[1][0], 95)

            self.assertEquals(u[0][0], 92)
            self.assertEquals(u[0][1], 97)
            self.assertEquals(u[1][0], 90)

            self.assertEquals(v[0][0], 121)
            self.assertEquals(v[0][1], 126)
            self.assertEquals(v[1][0], 122)

            self.assertAlmostEquals(y.mean(), 61.928749785665296, places=4)
            self.assertAlmostEquals(u.mean(), 114.6326517489712, places=4)
            self.assertAlmostEquals(v.mean(), 122.05084019204389, places=4)

            y, u, v = yuv_reader.next_y_u_v()

            self.assertEquals(y[0][0], 142)
            self.assertEquals(y[0][1], 128)
            self.assertEquals(y[1][0], 134)

            self.assertEquals(u[0][0], 93)
            self.assertEquals(u[0][1], 102)
            self.assertEquals(u[1][0], 91)

            self.assertEquals(v[0][0], 128)
            self.assertEquals(v[0][1], 126)
            self.assertEquals(v[1][0], 124)

            self.assertAlmostEquals(y.mean(), 61.265260631001375, places=4)
            self.assertAlmostEquals(u.mean(), 114.72515860768175, places=4)
            self.assertAlmostEquals(v.mean(), 122.12022033607681, places=4)
Beispiel #8
0
    def test_with(self):
        with YuvReader(
            filepath=config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv422p10le.yuv",
            width=576,
            height=324,
            yuv_type='yuv422p10le'
        ) as yuv_reader:

            y, u, v = yuv_reader.next_y_u_v()

            self.assertEquals(y[0][0], 87)
            self.assertEquals(y[0][1], 131)
            self.assertEquals(y[1][0], 95)

            self.assertEquals(u[0][0], 92.25)
            self.assertEquals(u[0][1], 97.5)
            self.assertEquals(u[1][0], 91.75)

            self.assertEquals(v[0][0], 121)
            self.assertEquals(v[0][1], 126.25)
            self.assertEquals(v[1][0], 121.25)

            self.assertAlmostEquals(y.mean(), 61.928749785665296, places=4)
            self.assertAlmostEquals(u.mean(), 114.63283661265432, places=4)
            self.assertAlmostEquals(v.mean(), 122.05113490226337, places=4)

            y, u, v = yuv_reader.next_y_u_v()

            self.assertEquals(y[0][0], 142)
            self.assertEquals(y[0][1], 128)
            self.assertEquals(y[1][0], 134)

            self.assertEquals(u[0][0], 93.25)
            self.assertEquals(u[0][1], 102.75)
            self.assertEquals(u[1][0], 92.75)

            self.assertEquals(v[0][0], 128.25)
            self.assertEquals(v[0][1], 126.5)
            self.assertEquals(v[1][0], 127.25)

            self.assertAlmostEquals(y.mean(), 61.265260631001375, places=4)
            self.assertAlmostEquals(u.mean(), 114.72527917095336, places=4)
            self.assertAlmostEquals(v.mean(), 122.12047217935527, places=4)
Beispiel #9
0
    def _generate_result(self, asset):
        # routine to call the command-line executable and generate feature
        # scores in the log file.

        quality_w, quality_h = asset.quality_width_height
        with YuvReader(filepath=asset.dis_workfile_path, width=quality_w,
                       height=quality_h,
                       yuv_type=self._get_workfile_yuv_type(asset.yuv_type)) \
                as dis_yuv_reader:
            scores_mtx_list = []
            i = 0
            for dis_yuv in dis_yuv_reader:
                dis_y = dis_yuv[0]
                firstm = dis_y.mean()
                secondm = dis_y.var() + firstm**2
                scores_mtx_list.append(np.hstack(([firstm], [secondm])))
                i += 1
            scores_mtx = np.vstack(scores_mtx_list)

        # write scores_mtx to log file
        log_file_path = self._get_log_file_path(asset)
        with open(log_file_path, "wb") as log_file:
            np.save(log_file, scores_mtx)
    def plot_explanations(cls, exps, assets=None, ys=None, ys_pred=None):

        # asserts
        N = cls.assert_explanations(exps, assets, ys, ys_pred)

        figs = []
        for n in range(N):
            weights = exps['feature_weights'][n]
            features = exps['features'][n]
            normalized = exps['features_normalized'][n]

            asset = assets[n] if assets is not None else None
            y = ys['label'][n] if ys is not None else None
            y_pred = ys_pred[n] if ys_pred is not None else None

            img = None
            if asset is not None:
                w, h = asset.dis_width_height
                with YuvReader(filepath=asset.dis_path,
                               width=w,
                               height=h,
                               yuv_type=asset.yuv_type) as yuv_reader:
                    for yuv in yuv_reader:
                        img, _, _ = yuv
                        break
                assert img is not None

            title = ""
            if asset is not None:
                title += "{}\n".format(
                    get_file_name_without_extension(asset.ref_path))
            if y is not None:
                title += "ground truth: {:.3f}\n".format(y)
            if y_pred is not None:
                title += "predicted: {:.3f}\n".format(y_pred)
            if title != "" and title[-1] == '\n':
                title = title[:-1]

            assert len(weights) == len(features)
            M = len(weights)

            fig = plt.figure()

            ax_top = plt.subplot(2, 1, 1)
            ax_left = plt.subplot(2, 3, 4)
            ax_mid = plt.subplot(2, 3, 5, sharey=ax_left)
            ax_right = plt.subplot(2, 3, 6, sharey=ax_left)

            if img is not None:
                ax_top.imshow(img, cmap='Greys_r')
            ax_top.get_xaxis().set_visible(False)
            ax_top.get_yaxis().set_visible(False)
            ax_top.set_title(title)

            pos = np.arange(M) + 0.1
            ax_left.barh(pos, features, color='b', label='feature')
            ax_left.set_xticks(np.arange(0, 1.1, 0.2))
            ax_left.set_yticks(pos + 0.35)
            ax_left.set_yticklabels(exps['feature_names'])
            ax_left.set_title('feature')

            ax_mid.barh(pos, normalized, color='g', label='fnormal')
            ax_mid.get_yaxis().set_visible(False)
            ax_mid.set_title('fnormal')

            ax_right.barh(pos, weights, color='r', label='weight')
            ax_right.get_yaxis().set_visible(False)
            ax_right.set_title('weight')

            plt.tight_layout()

            figs.append(fig)

        return figs