Beispiel #1
0
def cross_domain(model_path, device='cpu'):
    model = ConceptTagger.load(model_path, device)
    config = model.config
    log = Logger(os.path.join(config.save_dir, '_tgt.txt'), level='info')
    dataDict = getNERdata(dataSetName=config.dataset,
                          dataDir=config.data_dir,
                          desc_path=config.description_path,
                          cross_domain=config.cross_domain,
                          target_domain=config.target_domain)

    model.to(device)
    test_metric_pre, test_metric_rec, test_metric_f1 = evaluate(
        model, dataDict['target']['test'], config.batch_size, log)

    log.logger.info("test_pre : %.4f, test_rec : %.4f, test_f1 : %.4f" %
                    (test_metric_pre, test_metric_rec, test_metric_f1))
def cross_domain(model_path, device='cuda:1'):
    model = Bilstm_LabelEmbedding.load(model_path, device)
    config = model.config
    log = Logger(os.path.join(config.save_dir, '_tgt.txt'), level='info')
    dataDict = getNERdata(dataSetName=config.dataset,
                          dataDir=config.data_dir,
                          desc_path=config.description_path,
                          cross_domain=config.cross_domain,
                          exemplar_num=config.exemplar_num,
                          target_domain=config.target_domain)
    tgt_label2Idx = ExtractLabelsFromTokens(dataDict['target']['test'])

    model.label2Idx = tgt_label2Idx
    Emb = Bilstm_LabelEmbedding.BuildLabelEmbedding(
        model.embedding, model.word2Idx, tgt_label2Idx, model.description,
        dataDict['exemplar_test'], config.embedding_method,
        config.encoder_method, device)

    description_emb_test = BuildEmb.buildembedding(
        model.embedding, model.word2Idx, tgt_label2Idx,
        dataDict['description'], None, 'description', 'wordembedding',
        config.device)

    model.LabelEmbedding = torch.cat((Emb, description_emb_test), 1)

    if config.crf:
        model.crf.labelembedding = model.crf.buildCRFLabelEmbedding(
            model.LabelEmbedding)
        model.crf.num_tags = model.LabelEmbedding.size(0)
    model.to(device)

    (test_metric_pre, test_metric_rec,
     test_metric_f1), d = evaluate(model, dataDict['target']['test'],
                                   config.batch_size, log)
    f = open(os.path.join(config.save_dir, 'result.txt'), 'a+')
    js = json.dumps(d)
    f.write(js + '\n')
    f.close()

    # print("test_pre : %.4f, test_rec : %.4f, test_f1 : %.4f" % (test_metric_pre, test_metric_rec, test_metric_f1),
    #       file=sys.stderr)
    log.logger.info("test_pre : %.4f, test_rec : %.4f, test_f1 : %.4f" %
                    (test_metric_pre, test_metric_rec, test_metric_f1))
def train(config):
    dataDict = getNERdata(dataSetName=config.dataset,
                          dataDir=config.data_dir,
                          desc_path=config.description_path,
                          cross_domain=config.cross_domain,
                          exemplar_num=config.exemplar_num,
                          target_domain=config.target_domain)

    emb, word2Idx = readTokenEmbeddings(config.embed_file)
    char2Idx = getCharIdx()
    label2Idx = ExtractLabelsFromTokens(dataDict['source']['train'])

    label2IdxForDev = ExtractLabelsFromTokens(dataDict['target']['dev'])

    label2IdxForTest = ExtractLabelsFromTokens(dataDict['target']['test'])

    print(label2IdxForDev)
    print(dataDict['exemplar_dev'])
    DevLabelEmbedding = Bilstm_LabelEmbedding.BuildLabelEmbedding(
        emb, word2Idx, label2IdxForDev, dataDict['description'],
        dataDict['exemplar_dev'], config.embedding_method,
        config.encoder_method, config.device)
    TestLabelEmbedding = Bilstm_LabelEmbedding.BuildLabelEmbedding(
        emb, word2Idx, label2IdxForTest, dataDict['description'],
        dataDict['exemplar_test'], config.embedding_method,
        config.encoder_method, config.device)

    max_batch_size = math.ceil(
        len(dataDict['source']['train']) / config.batch_size)

    model = Bilstm_LabelEmbedding(config, emb, word2Idx, label2Idx, char2Idx,
                                  dataDict['description'],
                                  dataDict['exemplar_train'])
    model.train()
    model = model.to(config.device)
    hist_valid_scores = []
    patience = num_trial = 0
    train_iter = 0

    optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    train_time = time.time()

    config.save_dir = config.save_dir + config.target_domain + '/'

    if not os.path.exists(config.save_dir):
        os.mkdir(config.save_dir)

    if os.path.exists(os.path.join(config.save_dir, 'params')):
        os.remove(os.path.join(config.save_dir, 'params'))

    log = Logger(os.path.join(config.save_dir, '_src.txt'), level='info')

    for epoch in range(config.epoch):
        for da in data_generator(dataDict['source']['train'],
                                 config.batch_size):
            train_iter += 1
            x = da[0]
            y = da[1]
            loss = model(x, y, 'train')
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if train_iter % config.log_every == 0:
                # print(
                #     'epoch %d, iter %d, loss %.2f, time elapsed %.2f sec' %
                #     (epoch, train_iter, loss, time.time() - train_time),
                #     file=sys.stderr)
                log.logger.info(
                    'epoch %d, iter %d, loss %.2f, time elapsed %.2f sec' %
                    (epoch, train_iter, loss, time.time() - train_time))

            train_time = time.time()

            if train_iter % config.log_valid == 0:
                trainLabelEmbedding = model.LabelEmbedding
                trainLabel2Idx = model.label2Idx

                model.label2Idx = label2IdxForDev
                model.LabelEmbedding = DevLabelEmbedding
                if config.crf:
                    model.crf.labelembedding = model.crf.buildCRFLabelEmbedding(
                        model.LabelEmbedding)
                    model.crf.num_tags = model.LabelEmbedding.size(0)
                (valid_metric_pre, valid_metric_rec,
                 valid_metric_f1), d = evaluate(model,
                                                dataDict['target']['dev'],
                                                config.batch_size, log)

                model.label2Idx = label2IdxForTest
                model.LabelEmbedding = TestLabelEmbedding
                if config.crf:
                    model.crf.labelembedding = model.crf.buildCRFLabelEmbedding(
                        model.LabelEmbedding)
                    model.crf.num_tags = model.LabelEmbedding.size(0)
                (test_metric_pre, test_metric_rec,
                 test_metric_f1), d = evaluate(model,
                                               dataDict['target']['test'],
                                               config.batch_size, log)

                model.label2Idx = label2Idx
                model.LabelEmbedding = trainLabelEmbedding
                if config.crf:
                    model.crf.labelembedding = model.crf.buildCRFLabelEmbedding(
                        model.LabelEmbedding)
                    model.crf.num_tags = model.LabelEmbedding.size(0)

                # print("val_pre : %.4f, val_rec : %.4f, val_f1 : %.4f" % (valid_metric_pre, valid_metric_rec, valid_metric_f1), file=sys.stderr)
                # print("test_pre : %.4f, test_rec : %.4f, test_f1 : %.4f" % (test_metric_pre, test_metric_rec, test_metric_f1), file=sys.stderr)
                log.logger.info(
                    "val_pre : %.4f, val_rec : %.4f, val_f1 : %.4f" %
                    (valid_metric_pre, valid_metric_rec, valid_metric_f1))
                log.logger.info(
                    "test_pre : %.4f, test_rec : %.4f, test_f1 : %.4f" %
                    (test_metric_pre, test_metric_rec, test_metric_f1))
                is_better = len(
                    hist_valid_scores
                ) == 0 or valid_metric_f1 > max(hist_valid_scores)
                hist_valid_scores.append(valid_metric_f1)
                if is_better:
                    patience = 0
                    # print('save currently the best model to [%s]' % (config.save_dir + 'model'), file=sys.stderr)
                    log.logger.info('save currently the best model to [%s]' %
                                    (config.save_dir + 'model'))
                    model.save(config.save_dir + 'model')

                    # also save the optimizers' state
                    torch.save(optimizer.state_dict(),
                               config.save_dir + 'optim')
                elif patience < config.patience:
                    patience += 1
                    log.logger.info('hit patience %d' % patience)
                    # print('hit patience %d' % patience, file=sys.stderr)

                    if patience == int(config.patience):
                        num_trial += 1
                        log.logger.info('hit #%d trial' % num_trial)
                        # print('hit #%d trial' % num_trial, file=sys.stderr)
                        if num_trial == config.max_num_trial:
                            log.logger.info('early stop!')
                            # print('early stop!', file=sys.stderr)
                            exit(0)

                        lr = optimizer.param_groups[0]['lr'] * config.lr_decay
                        log.logger.info(
                            'load previously best model and decay learning rate to %f'
                            % lr)
                        # print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)

                        # load model
                        params = torch.load(
                            config.save_dir + 'model',
                            map_location=lambda storage, loc: storage)
                        model.load_state_dict(params['state_dict'])
                        model = model.to(config.device)

                        log.logger.info('restore parameters of the optimizers')
                        # print('restore parameters of the optimizers', file=sys.stderr)
                        optimizer.load_state_dict(
                            torch.load(config.save_dir + 'optim'))

                        # set new lr
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr

                        # reset patience
                        patience = 0