def get_meshes(seed, galaxies=False): mesh = {} mesh['s'] = tools.readbigfile(path + ftypefpm % (bs, nc, seed, step) + 'mesh/s/') partp = tools.readbigfile(path + ftypefpm % (bs, nc, seed, step) + 'dynamic/1/Position/') mesh['cic'] = tools.paintcic(partp, bs, nc) mesh['decic'] = tools.decic(mesh['cic'], kk, kny) mesh['R1'] = tools.fingauss(mesh['cic'], kk, R1, kny) mesh['R2'] = tools.fingauss(mesh['cic'], kk, R2, kny) mesh['GD'] = mesh['R1'] - mesh['R2'] hmesh = {} hposall = tools.readbigfile(path + ftype % (bs, ncf, seed, stepf) + 'FOF/PeakPosition/')[1:] massall = tools.readbigfile(path + ftype % (bs, ncf, seed, stepf) + 'FOF/Mass/')[1:].reshape(-1) * 1e10 hposd = hposall[:num].copy() massd = massall[:num].copy() hmesh['pcic'] = tools.paintcic(hposd, bs, nc) hmesh['pnn'] = tools.paintnn(hposd, bs, nc) hmesh['pnnsm'] = tools.fingauss(hmesh['pnn'], kk, R1, kny) hmesh['mnn'] = tools.paintnn(hposd, bs, nc, massd) return mesh, hmesh
def get_meshes(seed, galaxies=False): mesh = {} mesh['s'] = tools.readbigfile(path + ftypefpm % (bs, nc, seed, step) + 'mesh/s/') partp = tools.readbigfile(path + ftypefpm % (bs, nc, seed, step) + 'dynamic/1/Position/') mesh['cic'] = tools.paintcic(partp, bs, nc) mesh['cicovd'] = mesh['cic'] / mesh['cic'].mean() - 1 mesh['decic'] = tools.decic(mesh['cic'], kk, kny) mesh['R1'] = tools.fingauss(mesh['cic'], kk, R1, kny) mesh['R2'] = tools.fingauss(mesh['cic'], kk, R2, kny) mesh['GD'] = mesh['R1'] - mesh['R2'] hmesh = {} hposall = tools.readbigfile(path + ftype % (bs, ncf, seed, stepf) + 'FOF/PeakPosition/')[1:] massall = tools.readbigfile(path + ftype % (bs, ncf, seed, stepf) + 'FOF/Mass/')[1:].reshape(-1) * 1e10 hposd = hposall[:num].copy() massd = massall[:num].copy() print(massd[-1] / 1e10) hmesh['pcic'] = tools.paintcic(hposd, bs, nc) hmesh['pnn'] = tools.paintnn(hposd, bs, nc) hmesh['mnn'] = tools.paintnn(hposd, bs, nc, massd) hmesh['mcic'] = tools.paintcic(hposd, bs, nc, massd) hmesh['mcicovd'] = (hmesh['mcic'] - hmesh['mcic'].mean()) / hmesh['mcic'].mean() data = hmesh['mcicovd'] print(data.min(), data.max(), data.mean(), data.std()) return mesh, hmesh
def get_meshes(seed, galaxies=False, inverse=True): mesh = {} mesh['s'] = tools.readbigfile(path + ftypefpm % (bs, nc, seed, step) + 'mesh/s/') partp = tools.readbigfile(path + ftypefpm % (bs, nc, seed, step) + 'dynamic/1/Position/') mesh['cic'] = tools.paintcic(partp, bs, nc) mesh['ciclog'] = np.log(1e-3 + mesh['cic']) mesh['cicovd'] = mesh['cic'] / mesh['cic'].mean() - 1 mesh['decic'] = tools.decic(mesh['cic'], kk, kny) mesh['R1'] = tools.fingauss(mesh['cic'], kk, R1, kny) mesh['R2'] = tools.fingauss(mesh['cic'], kk, R2, kny) mesh['GD'] = mesh['R1'] - mesh['R2'] hmesh = {} hposall = tools.readbigfile(path + ftype % (bs, ncf, seed, stepf) + 'FOF/PeakPosition/')[1:] if stellar: massall = np.load(path + ftype % (bs, ncf, seed, stepf) + 'stellarmass.npy') else: massall = tools.readbigfile(path + ftype % (bs, ncf, seed, stepf) + 'FOF/Mass/')[1:].reshape(-1) * 1e10 hposd = hposall[:num].copy() massd = massall[:num].copy() print(massall.min() / 1e10, massall.max() / 1e10) print(massd.min() / 1e10, massd.max() / 1e10) hmesh['pcic'] = tools.paintcic(hposd, bs, nc) hmesh['pnn'] = tools.paintnn(hposd, bs, nc) hmesh['mnn'] = tools.paintnn(hposd, bs, nc, massd) hmesh['mcic'] = tools.paintcic(hposd, bs, nc, massd) hmesh['mcicnomean'] = (hmesh['mcic']) / hmesh['mcic'].mean() hmesh['mcicovd'] = (hmesh['mcic'] - hmesh['mcic'].mean()) / hmesh['mcic'].mean() hmesh['pcicovd'] = (hmesh['pcic'] - hmesh['pcic'].mean()) / hmesh['pcic'].mean() hmesh['pcicovdR3'] = tools.fingauss(hmesh['pcicovd'], kk, R1, kny) if inverse: return hmesh, mesh else: return mesh, hmesh
module = hub.Module('./../code/models/n%02d/%s/%s.hub'%(numd*1e4, suff, chkname)) xx = tf.placeholder(tf.float32, shape=[None, cube_sizeft, cube_sizeft, cube_sizeft, nchannels], name='input') yy = tf.placeholder(tf.float32, shape=[None, cube_size, cube_size, cube_size, 1], name='labels') output = module(dict(input=xx, label=yy, keepprob=1), as_dict=True)['prediction'] sess = tf.Session() sess.run(tf.initializers.global_variables()) # ############################# meshes = {} cube_features, cube_target = [], [] for seed in seeds: mesh = {} partp = tools.readbigfile(path + ftype%(bs, nc, seed, step) + 'dynamic/1/Position/') mesh['cic'] = tools.paintcic(partp, bs, ncp) mesh['decic'] = tools.decic(mesh['cic'], kk, kny) mesh['R1'] = tools.fingauss(mesh['cic'], kk, R1, kny) mesh['R2'] = tools.fingauss(mesh['cic'], kk, R2, kny) mesh['GD'] = mesh['R1'] - mesh['R2'] mesh['s'] = tools.readbigfile(path + ftype%(bs, nc, seed, step) + 'mesh/s/') hmesh = {} hposall = tools.readbigfile(path + ftype%(bs, ncf, seed, stepf) + 'FOF/PeakPosition/')[1:] hposd = hposall[:num].copy() hmesh['pcic'] = tools.paintcic(hposd, bs, nc) hmesh['pnn'] = tools.paintnn(hposd, bs, ncp) hmesh['target'] = hmesh['pnn'].copy() print('All the mesh have been generated for seed = %d'%seed) #Create training voxels
numd = 5e-4 num = int(numd * bs**3) seed = 100 R1 = 3 R2 = 3 * 1.2 kny = np.pi * ncp / bs kk = tools.fftk((ncp, ncp, ncp), bs) suff = '2ftmdg256' ############################# ##Read data and generate meshes #mesh = tools.readbigfile(path + ftype%(bs, nc, seed, step) + 'mesh/d/') partp = tools.readbigfile(path + ftype % (bs, nc, seed, step) + 'dynamic/1/Position/') mesh = tools.paintcic(partp, bs, ncp) meshdecic = tools.decic(mesh, kk, kny) meshR1 = tools.fingauss(mesh, kk, R1, kny) meshR2 = tools.fingauss(mesh, kk, R2, kny) meshdg = meshR1 - meshR2 #ftlist = [meshdecic.copy(), meshR1.copy(), meshdg.copy()] hposall = tools.readbigfile(path + ftype % (bs, ncf, seed, stepf) + 'FOF/PeakPosition/')[1:] hposd = hposall[:num].copy() #hposall = hposall[:2*num] # hpmeshall = tools.paintcic(hposall, bs, nc) # hpmeshd = tools.paintcic(hposd, bs, nc) #hpmeshall = tools.paintnn(hposall, bs, ncp) hpmeshd = tools.paintnn(hposd, bs, ncp)