testSimilarByWord('湖') def testCi(): testSimilarByWord("道路") testSimilarByWord("道家") testSimilarByWord("道行") def testVocab(): word = "月" print("-5k-") print(tools.getSimilarResult(model, word, vocab=5000)) print("-10k-") print(tools.getSimilarResult(model, word, vocab=10000)) print("-20k-") print(tools.getSimilarResult(model, word, vocab=20000)) if __name__ == "__main__": model = tools.loadModel('sgns/sgns.literature.bigram-char.txt') print("Lit model loaded") # testCi(); # testZi() testVocab() else: model = tools.loadModel('sgns/sgns.literature.bigram-char.txt') print("LIT[word] Model loaded")
help='GPU ID (negative value indicates CPU)') parser.add_argument('--input_num', '-in', type=int,default=30, help='input num') parser.add_argument('--next_day', '-nd', type=int,default=5, help='predict next day') parser.add_argument('--smooth_term', '-st', type=int,default=30, help='timeperiod to smooth accuray') parser.add_argument('--experiment_name', '-n', default='experiment', type=str,help='experiment name') args = parser.parse_args() input_num = args.input_num #モデルの読み込み model_1 = tools.loadModel('./train_result/20160523_2_vol2ema30class/final_model') model_2 = tools.loadModel('./train_result/20160523_3_volrsistoch30class/final_model') if args.gpu >= 0: cuda.check_cuda_available() print "use gpu" model_1.to_gpu() model_2.to_gpu() xp = cuda.cupy if args.gpu >= 0 else np START_TEST_DAY = 20090105 #START_TEST_DAY = 20100104 NEXT_DAY = args.next_day
batch = np.array(listbatch).astype(np.float32) try: x_batch = batch[:, :-output_num-2] y_batch = batch[:, -output_num-2:-2] except: print (batch.shape) print ("error!") raw_input() return x_batch, y_batch model = tools.loadModel(args.modelpath) if args.gpu >= 0: cuda.check_cuda_available() print "use gpu" xp = cuda.cupy if args.gpu >= 0 else np model.to_gpu() N = sum(1 for line in open(trainfile)) print ('N = ', N) N_test = sum(1 for line in open(testfile)) print ('N_test = ', N_test) sum_loss = 0 for i in range(0,N,args.batchsize): print 'checking train data... ', i,' / ',N batch = read_batch2(trainfile,range(i,i+args.batchsize))
break if newText not in history: break history += newText if len(history) % 100 == 0: print(len(history)) if len(history) < 4744: chainVisualSimilarity(newText, history, limit=limit) else: print(len(history), history) def testRelational(): result = model.most_similar('暖') print(result) result = model.most_similar(negative=['火']) print(result) result2 = model.most_similar(positive=['体', '本'], negative=['固']) print(result2) if __name__ == "__main__": model = tools.loadModel('../embeddings/VC/v3.2/v3.2_embeddings_ep19.txt') print(tools.getAnnoyIndex(model2, '情')) else: model = tools.loadModel('../embeddings/VC/v3.2/v3.2_embeddings_ep19.txt') print("VISUAL Model loaded")
# -*- coding: utf-8 -*- """ @author: cqx931 2019 """ import tools def testVocab(): word = "情" print(tools.getSimilarResult(model, word, vocab=5000)) print(tools.getSimilarResult(model, word, vocab=3000)) if __name__ == "__main__": model = tools.loadModel('sgns/sgns.sikuquanshu.bigram.txt') print(tools.testSimilarByWord(model, '品')) # testVocab() else: model = tools.loadModel('zi/zi_embeddingsgns.literature.bigram-char.txt') print("LIT Model loaded")