Beispiel #1
0
    def searching(self):
        """
        Searching using BFS.

        :return: planning path, action in each node, visited nodes in the planning process
        """

        q_bfs = queue.QueueFIFO()  # first-in-first-out queue
        q_bfs.put(self.xI)
        parent = {self.xI: self.xI}  # record parents of nodes
        action = {self.xI: (0, 0)}  # record actions of nodes

        while not q_bfs.empty():
            x_current = q_bfs.get()
            if x_current == self.xG:
                break
            if x_current != self.xI:
                tools.plot_dots(x_current, len(parent))
            for u_next in self.u_set:  # explore neighborhoods of current node
                x_next = tuple(
                    [x_current[i] + u_next[i] for i in range(len(x_current))])
                if x_next not in parent and x_next not in self.obs:  # node not visited and not in obstacles
                    q_bfs.put(x_next)
                    parent[x_next] = x_current
                    action[x_next] = u_next
        [path_bfs, action_bfs] = tools.extract_path(self.xI, self.xG, parent,
                                                    action)  # extract path

        return path_bfs, action_bfs
Beispiel #2
0
    def simulation(self, xI, xG, policy):
        """
        simulate a path using converged policy.

        :param xI: starting state
        :param xG: goal state
        :param policy: converged policy
        :return: simulation path
        """

        plt.figure(1)  # path animation
        tools.show_map(xI, xG, self.obs, self.lose,
                       self.name1)  # show background

        x, path = xI, []
        while True:
            u = self.u_set[policy[x]]
            x_next = (x[0] + u[0], x[1] + u[1])
            if x_next in self.obs:
                print("Collision!")  # collision: simulation failed
            else:
                x = x_next
                if x_next in xG:
                    break
                else:
                    tools.plot_dots(x)  # each state in optimal path
                    path.append(x)
        plt.show()

        return path
Beispiel #3
0
    def searching(self):
        """
        Searching using A_star.

        :return: planning path, action in each node, visited nodes in the planning process
        """

        q_astar = queue.QueuePrior()  # priority queue
        q_astar.put(self.xI, 0)
        parent = {self.xI: self.xI}  # record parents of nodes
        action = {self.xI: (0, 0)}  # record actions of nodes
        cost = {self.xI: 0}

        while not q_astar.empty():
            x_current = q_astar.get()
            if x_current == self.xG:  # stop condition
                break
            if x_current != self.xI:
                tools.plot_dots(x_current, len(parent))
            for u_next in self.u_set:  # explore neighborhoods of current node
                x_next = tuple(
                    [x_current[i] + u_next[i] for i in range(len(x_current))])
                if x_next not in self.obs:
                    new_cost = cost[x_current] + self.get_cost(
                        x_current, u_next)
                    if x_next not in cost or new_cost < cost[
                            x_next]:  # conditions for updating cost
                        cost[x_next] = new_cost
                        priority = new_cost + self.Heuristic(
                            x_next, self.xG, self.heuristic_type)
                        q_astar.put(
                            x_next, priority
                        )  # put node into queue using priority "f+h"
                        parent[x_next] = x_current
                        action[x_next] = u_next
        [path_astar,
         actions_astar] = tools.extract_path(self.xI, self.xG, parent, action)

        return path_astar, actions_astar
    def searching(self):
        """
        Searching using Dijkstra.

        :return: planning path, action in each node, visited nodes in the planning process
        """

        q_dijk = queue.QueuePrior()  # priority queue
        q_dijk.put(self.xI, 0)
        parent = {self.xI: self.xI}  # record parents of nodes
        action = {self.xI: (0, 0)}  # record actions of nodes
        cost = {self.xI: 0}

        while not q_dijk.empty():
            x_current = q_dijk.get()
            if x_current == self.xG:  # stop condition
                break
            if x_current != self.xI:
                tools.plot_dots(x_current, len(parent))
            for u_next in self.u_set:  # explore neighborhoods of current node
                x_next = tuple(
                    [x_current[i] + u_next[i] for i in range(len(x_current))])
                if x_next not in self.obs:  # node not visited and not in obstacles
                    new_cost = cost[x_current] + self.get_cost(
                        x_current, u_next)
                    if x_next not in cost or new_cost < cost[x_next]:
                        cost[x_next] = new_cost
                        priority = new_cost
                        q_dijk.put(
                            x_next, priority
                        )  # put node into queue using cost to come as priority
                        parent[x_next] = x_current
                        action[x_next] = u_next
        [path_dijk, action_dijk] = tools.extract_path(self.xI, self.xG, parent,
                                                      action)

        return path_dijk, action_dijk