def main(): start = time.time() # 样例数据 # 实际使用可以直接使用args = command_parse()从命令行获取 args = command_parse() # temp = [ # # "-n", # # "16", # "-f", # "tcp", # "-ip", # "127.0.0.1-127.0.0.5", # "-v", # "-m", # "proc", # "-w", # "port_by_proc.json", # "-p", # "100-150" # ] # args = command_parse(temp) host_ports = ip_port_parse(args.ip, args.p, is_port=(args.f==PORT_SCANNER)) print('程序开始运行...') available_ip_ports = run_scanner(concurrent_mode=args.m, concurrent_num=args.n, scanner_type=args.f, host_ports=host_ports,) if args.w: save_as_json(available_ip_ports, args.w) if args.v: print(f'程序消耗总时间:{time.time()-start}s')
def get_acc(vel): sl = ft.Scene("/home/ron/Desktop/Alexey/the_dataset/traj_" + vel + "_low.h5") sh = ft.Scene("/home/ron/Desktop/Alexey/the_dataset/traj_" + vel + "_high.h5") acc_low = group_avarage_acc(sl, group_by_x_n_z) acc_to_save = {} for key in acc_low.keys(): acc_to_save[key] = [acc_low[key][0].tolist(), acc_low[key][1]] tls.save_as_json(acc_to_save, "accel_by_x_and_z_" + vel + "_lower") print("Lower done") acc_high = group_avarage_acc(sh, group_by_x_n_z) acc_to_save = {} for key in acc_high.keys(): acc_to_save[key] = [acc_high[key][0].tolist(), acc_high[key][1]] tls.save_as_json(acc_to_save, "accel_by_x_and_z_" + vel + "_higher") print("Higher done") m = tls.merge_dict( tls.read_json("accel_by_x_and_z_" + vel + "_higher"), tls.read_json("accel_by_x_and_z_" + vel + "_lower"), lambda a, b: [((np.array(a[0]) * a[1] + np.array(b[0]) * b[1]) / (a[1] + b[1])).tolist(), a[1] + b[1]]) tls.save_as_json(m, "accel_by_x_and_z_" + vel) print("DONE")
def get_velocity_by_loc_w(speed, groups=1, prefix=""): higher_avg_vel = group_avarage_velocity_w( ft.Scene("C:/Users/theem/Desktop/Projects/alpha offline/Data/traj_" + speed + "_high.h5"), tls.group_by_location, groups=groups) print("Higher vel calculated") higer_dic = {} for key in higher_avg_vel.keys(): higer_dic[str(key).replace("-0.0", "0.0")] = higher_avg_vel[key] tls.save_as_json( higer_dic, "raupach_data/" + prefix + "avg_vel_by_loc_higher_" + speed) lower_avg_vel = group_avarage_velocity_w( ft.Scene("C:/Users/theem/Desktop/Projects/alpha offline/Data/traj_" + speed + "_low.h5"), tls.group_by_location, groups=groups) print("Lower vel calculated") lower_dic = {} for key in lower_avg_vel.keys(): lower_dic[str(key).replace("-0.0", "0.0")] = lower_avg_vel[key] tls.save_as_json( lower_dic, "raupach_data/" + prefix + "avg_vel_by_loc_lower_" + speed) merged = tls.merge_dict(lower_dic, higer_dic, merge_long_dict) tls.save_as_json(merged, "raupach_data/" + prefix + "avg_vel_by_loc_" + speed)
def get_average_velocity(speed): low_speed = group_avarage_velocity( ft.Scene("/home/ron/Desktop/Alexey/the_dataset/traj_" + speed + "_low.h5"), lambda t, i: tls.group_by_height(t, i, 0, 0.18, 0.01)) high_speed = group_avarage_velocity( ft.Scene("/home/ron/Desktop/Alexey/the_dataset/traj_" + speed + "_high.h5"), lambda t, i: tls.group_by_height(t, i, 0, 0.18, 0.01)) tls.save_as_json(low_speed, "cd_data/avg_vel_by_height_" + speed + "_lower") tls.save_as_json(high_speed, "cd_data/avg_vel_by_height_" + speed + "_higher") mrg = tls.merge_dict( low_speed, high_speed, lambda a, b: [((np.array(a[0]) * a[1] + np.array(b[0]) * b[1]) / (a[1] + b[1])).tolist(), a[1] + b[1]]) tls.save_as_json(mrg, "cd_data/avg_vel_by_height_" + speed)
def auto_disp_stress_calculator(speed): high_stress = get_dispersive_stress( ft.Scene("/home/ron/Desktop/Alexey/the_dataset/traj_" + speed + "_high.h5"), "raupach_data/avg_vel_by_loc_" + speed, "cd_data/avg_vel_by_height_" + speed) print("Stress higher calculated") print(high_stress) low_stress = get_dispersive_stress( ft.Scene("/home/ron/Desktop/Alexey/the_dataset/traj_" + speed + "_low.h5"), "raupach_data/avg_vel_by_loc_" + speed, "cd_data/avg_vel_by_height_" + speed) print("Stress lower calculeted") print(low_stress) tls.save_as_json(high_stress, "raupach_data/disp_stress_higher_" + speed) tls.save_as_json(low_stress, "raupach_data/disp_stress_lower_" + speed) merged_stress = tls.merge_dict( high_stress, low_stress, lambda a, b: [(a[0] * a[1] + b[0] * b[1]) / (a[1] + b[1]), a[1] + b[1]]) tls.save_as_json(merged_stress, "raupach_data/disp_stress_" + speed)
from tools import save_as_json start = time.time() # node_list, edge_dict = analyse("zdemo/20210319112759.json") node_list, edge_dict = analyse("zdemo/20210525170638.json") # print(edge_dict) attr_dict, attr_list = attribute(node_list) forward_list, output_id = forward_analyse(attr_dict, edge_dict) template = { "MyModel": { "Path": "./demo/model.py", "Name": ["Model"], "Init": [" "], "Super": ["Model"], "Attribute": attr_list, "Input": ["x"], "Forward": forward_list, "Output": [output_id], "Function": ["Model"] } } end = time.time() json_data = save_as_json(template, "./templates/pytorch/demo/config.json") # print(json_data) print(end - start)
def auto_rey_stress_err_calculator(speed, skip_vel=True): if not skip_vel: get_velocity_by_loc(speed) high_stress = get_reynolds_stress_errors( ft.Scene("C:/Users/theem/Desktop/Projects/alpha offline/Data/traj_" + speed + "_high.h5"), "raupach_data/goruped_u_avg_vel_by_loc_" + speed, "raupach_data/goruped_w_avg_vel_by_loc_" + speed, True) print("Stress higher calculated") print(high_stress) low_stress = get_reynolds_stress_errors( ft.Scene("C:/Users/theem/Desktop/Projects/alpha offline/Data/traj_" + speed + "_low.h5"), "raupach_data/goruped_u_avg_vel_by_loc_" + speed, "raupach_data/goruped_w_avg_vel_by_loc_" + speed, True) print("Stress lower calculeted") print(low_stress) tls.save_as_json(high_stress, "raupach_data/rey_stress_higher_lerr_" + speed) tls.save_as_json(low_stress, "raupach_data/rey_stress_lower_lerr_" + speed) merged_stress = tls.merge_dict( high_stress, low_stress, lambda a, b: [(a[0] * a[1] + b[0] * b[1]) / (a[1] + b[1]), a[1] + b[1]]) tls.save_as_json(merged_stress, "raupach_data/rey_stress_lerr_" + speed) high_stress = get_reynolds_stress_errors( ft.Scene("C:/Users/theem/Desktop/Projects/alpha offline/Data/traj_" + speed + "_high.h5"), "raupach_data/goruped_u_avg_vel_by_loc_" + speed, "raupach_data/goruped_w_avg_vel_by_loc_" + speed, False) print("Stress higher calculated") print(high_stress) low_stress = get_reynolds_stress_errors( ft.Scene("C:/Users/theem/Desktop/Projects/alpha offline/Data/traj_" + speed + "_low.h5"), "raupach_data/goruped_u_avg_vel_by_loc_" + speed, "raupach_data/goruped_w_avg_vel_by_loc_" + speed, False) print("Stress lower calculeted") print(low_stress) tls.save_as_json(high_stress, "raupach_data/rey_stress_higher_herr_" + speed) tls.save_as_json(low_stress, "raupach_data/rey_stress_lower_herr_" + speed) merged_stress = tls.merge_dict( high_stress, low_stress, lambda a, b: [(a[0] * a[1] + b[0] * b[1]) / (a[1] + b[1]), a[1] + b[1]]) tls.save_as_json(merged_stress, "raupach_data/rey_stress_herr_" + speed)
import torch import time import neural_genesis from framework_analyse.class_info_analyse import get_attr_init_dict from tools import save_as_json if __name__ == '__main__': # start = time.time_ns() start = time.time() info_dict = get_attr_init_dict(neural_genesis.nn) # end = time.time_ns() end = time.time() save_as_json(info_dict, './torchModel.json') print(end - start)